Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleARTIFICIAL INTELLIGENCE

Deep Learning MRI Models for the Differential Diagnosis of Tumefactive Demyelination versus IDH Wild-Type Glioblastoma

Gian Marco Conte, Mana Moassefi, Paul A. Decker, Matthew L. Kosel, Christina B. McCarthy, Jessica A. Sagen, Yalda Nikanpour, Mahboubeh Fereidan-Esfahani, Michael W. Ruff, Fiorella S. Guido, Heather K. Pump, Terry C. Burns, Robert B. Jenkins, Bradley J. Erickson, Daniel H. Lachance, W. Oliver Tobin and Jeanette E. Eckel-Passow
American Journal of Neuroradiology June 2025, DOI: https://doi.org/10.3174/ajnr.A8645
Gian Marco Conte
aFrom the Department of Radiology (G.M.C., M.M., Y.N., B.J.E.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Gian Marco Conte
Mana Moassefi
aFrom the Department of Radiology (G.M.C., M.M., Y.N., B.J.E.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Mana Moassefi
Paul A. Decker
bDeptartment of Quantitative Health Sciences (P.A.D., M.L.K., J.E.E.-P.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthew L. Kosel
bDeptartment of Quantitative Health Sciences (P.A.D., M.L.K., J.E.E.-P.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christina B. McCarthy
cDepartment of Neurology (C.B.M., J.A.S., M.W.R., F.S.G., H.K.P., D.H.L., W.O.T.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jessica A. Sagen
cDepartment of Neurology (C.B.M., J.A.S., M.W.R., F.S.G., H.K.P., D.H.L., W.O.T.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yalda Nikanpour
aFrom the Department of Radiology (G.M.C., M.M., Y.N., B.J.E.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mahboubeh Fereidan-Esfahani
dDell Medical School (M.F.-E.), University of Texas, Austin, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael W. Ruff
cDepartment of Neurology (C.B.M., J.A.S., M.W.R., F.S.G., H.K.P., D.H.L., W.O.T.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fiorella S. Guido
cDepartment of Neurology (C.B.M., J.A.S., M.W.R., F.S.G., H.K.P., D.H.L., W.O.T.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Heather K. Pump
cDepartment of Neurology (C.B.M., J.A.S., M.W.R., F.S.G., H.K.P., D.H.L., W.O.T.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Heather K. Pump
Terry C. Burns
eDepartment of Neurosurgery (T.C.B.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Terry C. Burns
Robert B. Jenkins
fDepartment of Laboratory Medicine & Pathology (R.B.J.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Robert B. Jenkins
Bradley J. Erickson
aFrom the Department of Radiology (G.M.C., M.M., Y.N., B.J.E.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Bradley J. Erickson
Daniel H. Lachance
cDepartment of Neurology (C.B.M., J.A.S., M.W.R., F.S.G., H.K.P., D.H.L., W.O.T.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Daniel H. Lachance
W. Oliver Tobin
cDepartment of Neurology (C.B.M., J.A.S., M.W.R., F.S.G., H.K.P., D.H.L., W.O.T.), Mayo Clinic, Rochester, Minnesota
gCenter for Multiple Sclerosis and Autoimmune Neurology (W.O.T.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for W. Oliver Tobin
Jeanette E. Eckel-Passow
bDeptartment of Quantitative Health Sciences (P.A.D., M.L.K., J.E.E.-P.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jeanette E. Eckel-Passow
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Balloy G,
    2. Pelletier J,
    3. Suchet L, et al
    ; Société Francophone de la Sclérose en Plaques. Inaugural tumor-like multiple sclerosis: clinical presentation and medium-term outcome in 87 patients. J Neurol 2018;265:2251–59 doi:10.1007/s00415-018-8984-7 pmid:30054790
    CrossRefPubMed
  2. 2.↵
    1. Frankl S,
    2. Viaene A,
    3. Vossough A, et al
    . Solitary tumefactive demyelinating lesions in children: clinical and magnetic resonance imaging features, pathologic characteristics, and outcomes. Pediatr Neurol 2024;157:141–50 doi:10.1016/j.pediatrneurol.2024.05.012 pmid:38917518
    CrossRefPubMed
  3. 3.↵
    1. Pervin I,
    2. Ramanathan S,
    3. Cappelen-Smith C, et al
    . Clinical and radiological characteristics and outcomes of patients with recurrent or relapsing tumefactive demyelination. Mult Scler Relat Disord 2024;82:105408 doi:10.1016/j.msard.2023.105408 pmid:38219394
    CrossRefPubMed
  4. 4.↵
    1. Tobin WO,
    2. Meyer FB,
    3. Keegan BM
    . Diagnostic yield and safety of cerebellar and brainstem parenchymal biopsy. World Neurosurg 2015;84:1973–76 doi:10.1016/j.wneu.2015.08.062 pmid:26342777
    CrossRefPubMed
  5. 5.↵
    1. Tremblay MA,
    2. Villanueva-Meyer JE,
    3. Cha S, et al
    . Clinical and imaging correlation in patients with pathologically confirmed tumefactive demyelinating lesions. J Neurol Sci 2017;381:83–87 doi:10.1016/j.jns.2017.08.015 pmid:28991721
    CrossRefPubMed
  6. 6.↵
    1. Lucchinetti CF,
    2. Gavrilova RH,
    3. Metz I, et al
    . Clinical and radiographic spectrum of pathologically confirmed tumefactive multiple sclerosis. Brain 2008;131:1759–75 doi:10.1093/brain/awn098 pmid:18535080
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Fereidan-Esfahani M,
    2. Decker PA,
    3. Weigand SD, et al
    . Defining the natural history of tumefactive demyelination: a retrospective cohort of 257 patients. Ann Clin Transl Neurol 2023;10:1544–55 doi:10.1002/acn3.51844 pmid:37443413
    CrossRefPubMed
  8. 8.↵
    1. Fereidan-Esfahani M,
    2. Decker PA,
    3. Eckel Passow JE, et al
    . Population-based incidence and clinico-radiological characteristics of tumefactive demyelination in Olmsted County, Minnesota, United States. Eur J Neurol 2022;29:782–89 doi:10.1111/ene.15182 pmid:34773343
    CrossRefPubMed
  9. 9.↵
    1. Mouresan EF,
    2. Mentesidou E,
    3. Berglund A, et al
    . Clinical characteristics and long-term outcomes of late-onset multiple sclerosis: a Swedish nationwide study. Neurology 2024;102:e208051 doi:10.1212/WNL.0000000000208051 pmid:38394472
    CrossRefPubMed
  10. 10.↵
    1. Tobin WO,
    2. Costanzi C,
    3. Guo Y, et al
    . Clinical-radiological-pathological spectrum of central nervous system-idiopathic inflammatory demyelinating disease in the elderly. Mult Scler 2017;23:1204–13 doi:10.1177/1352458516675748 pmid:27760861
    CrossRefPubMed
  11. 11.↵
    1. Lin X,
    2. Yu WY,
    3. Liauw L, et al
    . Clinicoradiologic features distinguish tumefactive multiple sclerosis from CNS neoplasms. Neurol Clin Pract 2017;7:53–64 doi:10.1212/CPJ.0000000000000319 pmid:29849229
    Abstract/FREE Full Text
  12. 12.↵
    1. Banks SA,
    2. Willrich MAV,
    3. Eckel-Passow JE, et al
    . Cerebrospinal fluid kappa free light chains in patients with tumefactive demyelination. Clin Chem Lab Med 2024;62:e189–92 doi:10.1515/cclm-2023-1416 pmid:38295388
    CrossRefPubMed
  13. 13.↵
    1. Fereidan-Esfahani M,
    2. Tobin WO
    . Cyclophosphamide in treatment of tumefactive multiple sclerosis. Mult Scler Relat Disord 2021;47:102627 doi:10.1016/j.msard.2020.102627 pmid:33246262
    CrossRefPubMed
  14. 14.↵
    1. Horbinski C,
    2. Nabors LB,
    3. Portnow J, et al
    . NCCN Guidelines(R) Insights: Central Nervous System Cancers, Version 2.2022. J Natl Compr Canc Netw 2023;21:12–20 doi:10.6004/jnccn.2023.0002 pmid:36634606
    CrossRefPubMed
  15. 15.↵
    1. Miller RC,
    2. Lachance DH,
    3. Lucchinetti CF, et al
    . Multiple sclerosis, brain radiotherapy, and risk of neurotoxicity: the Mayo Clinic experience. Int J Radiat Oncol Biol Phys 2006;66:1178–86 doi:10.1016/j.ijrobp.2006.06.014 pmid:16965867
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Abou Zeid N,
    2. Pirko I,
    3. Erickson B, et al
    . Diffusion-weighted imaging characteristics of biopsy-proven demyelinating brain lesions. Neurology 2012;78:1655–62 doi:10.1212/WNL.0b013e3182574f66 pmid:22573639
    CrossRefPubMed
  17. 17.↵
    1. Mabray MC,
    2. Cohen BA,
    3. Villanueva-Meyer JE, et al
    . Performance of apparent diffusion coefficient values and conventional MRI features in differentiating tumefactive demyelinating lesions from primary brain neoplasms. AJR Am J Roentgenol 2015;205:1075–85 doi:10.2214/AJR.14.13970 pmid:26496556
    CrossRefPubMed
  18. 18.↵
    1. Cacciaguerra L,
    2. Morris P,
    3. Tobin WO, et al
    . Tumefactive demyelination in MOG Ab-associated disease, multiple sclerosis, and AQP-4-IgG-positive neuromyelitis optica spectrum disorder. Neurology 2023;100:e1418–e1432 doi:10.1212/WNL.0000000000206820 pmid:36690455
    Abstract/FREE Full Text
  19. 19.↵
    1. Koelblinger C,
    2. Fruehwald-Pallamar J,
    3. Kubin K, et al
    . Atypical idiopathic inflammatory demyelinating lesions (IIDL): conventional and diffusion-weighted MR imaging (DWI) findings in 42 cases. Eur J Radiology 2013;82:1996–2004 doi:10.1016/j.ejrad.2013.07.026 pmid:23993757
    CrossRefPubMed
  20. 20.↵
    1. Schwartz KM,
    2. Erickson BJ,
    3. Lucchinetti C
    . Pattern of T2 hypointensity associated with ring-enhancing brain lesions can help to differentiate pathology. Neuroradiology 2006;48:143–49 doi:10.1007/s00234-005-0024-5 pmid:16447037
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Zhang Y,
    2. Liang K,
    3. He J, et al
    . Deep learning with data enhancement for the differentiation of solitary and multiple cerebral glioblastoma, lymphoma, and tumefactive demyelinating lesion. Front Oncol 2021;11:665891 doi:10.3389/fonc.2021.665891 pmid:34490082
    CrossRefPubMed
  22. 22.↵
    1. Ryu WS,
    2. Kang YR,
    3. Noh YG, et al
    . Acute infarct segmentation on diffusion-weighted imaging using deep learning algorithm and RAPID MRI. J Stroke 2023;25:425–29 doi:10.5853/jos.2023.02145 pmid:37813675
    CrossRefPubMed
  23. 23.↵
    1. Lee J,
    2. Burkett BJ,
    3. Min HK, et al
    . Synthesizing images of tau pathology from cross-modal neuroimaging using deep learning. Brain 2024;147:980–95 doi:10.1093/brain/awad346 pmid:37804318
    CrossRefPubMed
  24. 24.↵
    1. Wang W,
    2. Zhao Y,
    3. Teng L, et al
    . Neuropathologist-level integrated classification of adult-type diffuse gliomas using deep learning from whole-slide pathological images. Nat Commun 2023;14:6359 doi:10.1038/s41467-023-41195-9 pmid:37821431
    CrossRefPubMed
  25. 25.↵
    1. Isensee F,
    2. Jaeger PF,
    3. Kohl SAA, et al
    . nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 2021;18:203–11 doi:10.1038/s41592-020-01008-z pmid:33288961
    CrossRefPubMed
  26. 26.↵
    1. Isensee F,
    2. Schell M,
    3. Pflueger I, et al
    . Automated brain extraction of multisequence MRI using artificial neural networks. Hum Brain Mapp 2019;40:4952–64 doi:10.1002/hbm.24750 pmid:31403237
    CrossRefPubMed
  27. 27.↵
    1. Pati S,
    2. Baid U,
    3. Edwards B, et al
    . The federated tumor segmentation (FeTS) tool: an open-source solution to further solid tumor research. Phys Med Biol 2022;67: doi:10.1088/1361-6560/ac9449 pmid:36137534
    CrossRefPubMed
  28. 28.↵
    1. Rohlfing T,
    2. Zahr NM,
    3. Sullivan EV, et al
    . The SRI24 multichannel atlas of normal adult human brain structure. Hum Brain Mapp 2010;31:798–819 doi:10.1002/hbm.20906 pmid:20017133
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Cardoso MJ,
    2. Li W,
    3. Brown R, et al
    . MONAI: An Open-Source Framework for Deep Learning in Healthcare. arXiv.org 2022. https://doi.org/10.48550/arXiv.2211.02701. Accessed May 1, 2024
  30. 30.↵
    1. Hastie T,
    2. Tibshirani R,
    3. Friedman JH
    . The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer-Verlag; 2009.
  31. 31.↵
    1. Kolakshyapati M,
    2. Hashizume A,
    3. Ochi K, et al
    . Usefulness of histogram-profile analysis in ring-enhancing intracranial lesions. World Neurosurg 2019;131:e226–36 doi:10.1016/j.wneu.2019.07.123 pmid:31349079
    CrossRefPubMed
  32. 32.↵
    1. Verma RK,
    2. Wiest R,
    3. Locher C, et al
    . Differentiating enhancing multiple sclerosis lesions, glioblastoma, and lymphoma with dynamic texture parameters analysis (DTPA): a feasibility study. Med Phys 2017;44:4000–08 doi:10.1002/mp.12356 pmid:28543071
    CrossRefPubMed
  33. 33.↵
    1. Ikeguchi R,
    2. Shimizu Y,
    3. Abe K, et al
    . Proton magnetic resonance spectroscopy differentiates tumefactive demyelinating lesions from gliomas. Mult Scler Relat Disord 2018;26:77–84 doi:10.1016/j.msard.2018.08.025 pmid:30237108
    CrossRefPubMed
  34. 34.↵
    1. Hashimoto S,
    2. Inaji M,
    3. Nariai T, et al
    . Usefulness of [(11)C] methionine PET in the differentiation of tumefactive multiple sclerosis from high grade astrocytoma. Neurol Med Chir (Tokyo) 2019;59:176–83 doi:10.2176/nmc.oa.2018-0287 pmid:30996153
    CrossRefPubMed
  35. 35.↵
    1. Kebir S,
    2. Rauschenbach L,
    3. Weber M, et al
    . Machine learning-based differentiation between multiple sclerosis and glioma WHO II degrees -IV degrees using O-(2-[18F] fluoroethyl)-L-tyrosine positron emission tomography. J Neurooncol 2021;152:325–32 doi:10.1007/s11060-021-03701-1 pmid:33502678
    CrossRefPubMed
  36. 36.↵
    1. Yasuda S,
    2. Yano H,
    3. Kimura A, et al
    . Frontal tumefactive demyelinating lesion mimicking glioblastoma differentiated by methionine positron emission tomography. World Neurosurg 2018;119:244–48 doi:10.1016/j.wneu.2018.08.027 pmid:30114544
    CrossRefPubMed
  37. 37.↵
    1. Kim DS,
    2. Na DG,
    3. Kim KH, et al
    . Distinguishing tumefactive demyelinating lesions from glioma or central nervous system lymphoma: added value of unenhanced CT compared with conventional contrast-enhanced MR imaging. Radiology 2009;251:467–75 doi:10.1148/radiol.2512072071 pmid:19261924
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Ransohoff DF
    . Bias as a threat to the validity of cancer molecular-marker research. Nat Rev Cancer 2005;5:142–49 doi:10.1038/nrc1550 pmid:15685197
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Huang G,
    2. Liu Z,
    3. van der Maaten L, et al
    . Densely connected convolutional networks. arXiv.org 2016. https://doi,org/10.48550/arXiv.1608.06993. Accessed May 1, 2024
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Deep Learning MRI Models for the Differential Diagnosis of Tumefactive Demyelination versus IDH Wild-Type Glioblastoma
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Gian Marco Conte, Mana Moassefi, Paul A. Decker, Matthew L. Kosel, Christina B. McCarthy, Jessica A. Sagen, Yalda Nikanpour, Mahboubeh Fereidan-Esfahani, Michael W. Ruff, Fiorella S. Guido, Heather K. Pump, Terry C. Burns, Robert B. Jenkins, Bradley J. Erickson, Daniel H. Lachance, W. Oliver Tobin, Jeanette E. Eckel-Passow
Deep Learning MRI Models for the Differential Diagnosis of Tumefactive Demyelination versus IDH Wild-Type Glioblastoma
American Journal of Neuroradiology Jun 2025, DOI: 10.3174/ajnr.A8645

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
MRI-Based Models for Diagnosis of Brain Lesions
Gian Marco Conte, Mana Moassefi, Paul A. Decker, Matthew L. Kosel, Christina B. McCarthy, Jessica A. Sagen, Yalda Nikanpour, Mahboubeh Fereidan-Esfahani, Michael W. Ruff, Fiorella S. Guido, Heather K. Pump, Terry C. Burns, Robert B. Jenkins, Bradley J. Erickson, Daniel H. Lachance, W. Oliver Tobin, Jeanette E. Eckel-Passow
American Journal of Neuroradiology Jun 2025, DOI: 10.3174/ajnr.A8645
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Graphical Abstract
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Large Language Models in Radiology
  • Improving Hematoma Expansion Prediction Robustness
Show more Artificial Intelligence

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire