Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain
Open Access

Automated Integration of Multimodal MRI for the Probabilistic Detection of the Central Vein Sign in White Matter Lesions

J.D. Dworkin, P. Sati, A. Solomon, D.L. Pham, R. Watts, M.L. Martin, D. Ontaneda, M.K. Schindler, D.S. Reich and R.T. Shinohara
American Journal of Neuroradiology October 2018, 39 (10) 1806-1813; DOI: https://doi.org/10.3174/ajnr.A5765
J.D. Dworkin
aFrom the Department of Biostatistics, Epidemiology, and Informatics (J.D.D., M.L.M., R.T.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.D. Dworkin
P. Sati
bTranslational Neuroradiology Section (P.S., M.K.S., D.S.R.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P. Sati
A. Solomon
cDepartments of Neurological Sciences (A.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Solomon
D.L. Pham
eCenter for Neuroscience and Regenerative Medicine (D.L.P.), Henry M. Jackson Foundation, Bethesda, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D.L. Pham
R. Watts
dRadiology (R.W.), Larner College of Medicine at the University of Vermont, Burlington, Vermont
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. Watts
M.L. Martin
aFrom the Department of Biostatistics, Epidemiology, and Informatics (J.D.D., M.L.M., R.T.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.L. Martin
D. Ontaneda
fMellen Center for Multiple Sclerosis Treatment and Research (D.O.), Cleveland Clinic, Cleveland, Ohio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Ontaneda
M.K. Schindler
bTranslational Neuroradiology Section (P.S., M.K.S., D.S.R.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.K. Schindler
D.S. Reich
bTranslational Neuroradiology Section (P.S., M.K.S., D.S.R.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
gDepartment of Neurology (D.S.R.), Johns Hopkins University School of Medicine, Baltimore, Maryland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D.S. Reich
R.T. Shinohara
aFrom the Department of Biostatistics, Epidemiology, and Informatics (J.D.D., M.L.M., R.T.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.T. Shinohara
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. McDonald WI,
    2. Compston A,
    3. Edan G, et al
    . Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Ann Neurol 2001;50:121–127 pmid:11456302
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Solomon AJ,
    2. Klein EP,
    3. Bourdette D
    . “Undiagnosing” multiple sclerosis: the challenge of misdiagnosis in MS. Neurology 2012;78:1986–91 doi:10.1212/WNL.0b013e318259e1b2 pmid:22581930
    Abstract/FREE Full Text
  3. 3.↵
    1. Solomon AJ,
    2. Bourdette DN,
    3. Cross AH, et al
    . The contemporary spectrum of multiple sclerosis misdiagnosis: a multicenter study. Neurology 2016;87:1393–99 doi:10.1212/WNL.0000000000003152 pmid:27581217
    Abstract/FREE Full Text
  4. 4.↵
    1. Aliaga ES,
    2. Barkhof F
    . MRI mimics of multiple sclerosis. Handb Clin Neurol 2014;122:291–316 doi:10.1016/B978-0-444-52001-2.00012-1 pmid:24507523
    CrossRefPubMed
  5. 5.↵
    1. Miller DH,
    2. Weinshenker BG,
    3. Filippi M, et al
    . Differential diagnosis of suspected multiple sclerosis: a consensus approach. Mult Scler 2008;14:1157–74 doi:10.1177/1352458508096878 pmid:18805839
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Fog T
    . On the vessel-plaque relationships in the brain in multiple sclerosis. Acta Neurol Scand Suppl 1964;40:(Suppl 10):9–15 pmid:14194816
    PubMed
  7. 7.↵
    1. Tallantyre EC,
    2. Dixon JE,
    3. Donaldson I, et al
    . Ultra-high-field imaging distinguishes MS lesions from asymptomatic white matter lesions. Neurology 2011;76:534–39 doi:10.1212/WNL.0b013e31820b7630 pmid:21300968
    Abstract/FREE Full Text
  8. 8.↵
    1. Reichenbach JR,
    2. Venkatesan R,
    3. Schillinge DJ, et al
    . Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 1997;204:272–77 doi:10.1148/radiology.204.1.9205259 pmid:9205259
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Sati P,
    2. George IC,
    3. Shea C, et al
    . FLAIR*: a combined MR contrast technique for visualizing white matter lesions and parenchymal veins. Radiology 2012;265:926–32 doi:10.1148/radiol.12120208 pmid:23074257
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Campion T,
    2. Smith RJ,
    3. Altmann DR, et al
    . FLAIR* to visualize veins in white matter lesions: a new tool for the diagnosis of multiple sclerosis? Eur Radiol 2017;27:4257–63 doi:10.1007/s00330-017-4822-z pmid:28409356
    CrossRefPubMed
  11. 11.↵
    1. Kilsdonk ID,
    2. Wattjes MP,
    3. Lopez-Soriano A, et al
    . Improved differentiation between MS and vascular brain lesions using FLAIR* at 7 Tesla. Eur Radiol 2014;24:841–49 doi:10.1007/s00330-013-3080-y pmid:24317461
    CrossRefPubMed
  12. 12.↵
    1. Kister I,
    2. Herbert J,
    3. Zhou Y, et al
    . Ultrahigh-field MR (7 T) imaging of brain lesions in neuromyelitis optica. Mult Scler 2013;2013:398259 doi:10.1155/2013/398259 pmid:23431447
    CrossRefPubMed
  13. 13.↵
    1. Mistry N,
    2. Abdel-Fahim R,
    3. Samaraweera A, et al
    . Imaging central veins in brain lesions with 3-T T2*-weighted magnetic resonance imaging differentiates multiple sclerosis from microangiopathic brain lesions. Mult Scler 2016;22:1289–96 doi:10.1177/1352458515616700 pmid:26658816
    CrossRefPubMed
  14. 14.↵
    1. Sinnecker T,
    2. Dörr J,
    3. Pfueller CF, et al
    . Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis. Neurology 2012;79:708–14 doi:10.1212/WNL.0b013e3182648bc8 pmid:22855861
    Abstract/FREE Full Text
  15. 15.↵
    1. Solomon AJ,
    2. Schindler MK,
    3. Howard DB, et al
    . “Central vessel sign” on 3T FLAIR* MRI for the differentiation of multiple sclerosis from migraine. Ann Clin Transl Neurol 2016:3:82–87 doi:10.1002/acn3.273 pmid:26900578
    CrossRefPubMed
  16. 16.↵
    1. Wuerfel J,
    2. Sinnecker T,
    3. Ringelstein EB, et al
    . Lesion morphology at 7 Tesla MRI differentiates Susac syndrome from multiple sclerosis. Mult Scler 2012;18:1592–99 doi:10.1177/1352458512441270 pmid:22711711
    CrossRefPubMed
  17. 17.↵
    1. Solomon AJ,
    2. Watts R,
    3. Ontaneda D, et al
    . Diagnostic performance of central vein sign for multiple sclerosis with a simplified three-lesion algorithm. Mult Scler 2018;24:750–57 doi:10.1177/1352458517726383 pmid:28820013
    CrossRefPubMed
  18. 18.↵
    1. Maggi P,
    2. Absinta M,
    3. Grammatico M, et al
    . Central vein sign differentiates multiple sclerosis from central nervous system inflammatory vasculopathies. Ann Neurol 2018;83:283–94 doi:10.1002/ana. 25146 pmid:29328521
    CrossRefPubMed
  19. 19.↵
    1. Sati P,
    2. Oh J,
    3. Constable RT, et al
    ; NAIMS Cooperative. The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Nat Rev Neurol 2016;12:714–22 doi:10.1038/nrneurol.2016.166 pmid:27834394
    CrossRefPubMed
  20. 20.↵
    1. Wells WM,
    2. Colchester A,
    3. Delp S
    1. Frangi AF,
    2. Niessen WJ,
    3. Vincken KL, et al
    . Multiscale vessel enhancement filtering. In: Wells WM, Colchester A, Delp S, eds. Proceedings of Medical Image Computing and Computer-Assisted Intervention–MICCAI'98, Cambridge, Massachusetts. October 11–18, 1998
  21. 21.↵
    1. Valcarcel AM,
    2. Linn KA,
    3. Vandekar SN, et al
    . MIMoSA: an automated method for intermodal segmentation analysis of multiple sclerosis brain lesions. J Neuroimaging 2018;28:389–98 doi:10.1111/jon.12506 pmid:29516669
    CrossRefPubMed
  22. 22.↵
    R: A Language and Environment for Statistical Computing. http://www.r-project.org. Accessed June 19, 2018.
  23. 23.↵
    1. Sweeney EM,
    2. Shinohara RT,
    3. Shiee N, et al
    . OASIS is automated statistical inference for segmentation, with applications to multiple sclerosis lesion segmentation in MRI. Neuroimage Clin 2013;2:402–13 doi:10.1016/j.nicl.2013.03.002 pmid:24179794
    CrossRefPubMed
  24. 24.↵
    1. Dworkin JD,
    2. Linn KA,
    3. Oguz I, et al
    ; North American Imaging in Multiple Sclerosis Cooperative. An automated statistical technique for counting distinct multiple sclerosis lesions. AJNR Am J Neuroradiol 2018;39:626–33 doi:10.3174/ajnr.A5556 pmid:29472300
    Abstract/FREE Full Text
  25. 25.↵
    1. Crimi A,
    2. Bakas S,
    3. Kuijf H
    1. Oguz I,
    2. Carass A,
    3. Pham DL, et al
    . Dice overlap measures for objects of unknown number: application to lesion segmentation. In: Crimi A, Bakas S, Kuijf H, eds. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Berlin: Springer-Verlag International Publishing; 2018;10670:3–14
  26. 26.↵
    1. Zhang Y,
    2. Brady M,
    3. Smith S
    . Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001;20:45–57 doi:10.1109/42.906424 pmid:11293691
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Perona P,
    2. Malik J
    . Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 1990;12:629–39 doi:10.1109/34.56205
    CrossRefWeb of Science
  28. 28.↵
    1. Sati P1,
    2. Thomasson DM,
    3. Li N, et al
    . Rapid, high-resolution, whole-brain, susceptibility-based MRI of multiple sclerosis. Mult Scler 2014;20:1464–70 doi:10.1177/1352458514525868 pmid:24639479
    CrossRefPubMed
  29. 29.↵
    1. Tustison NJ,
    2. Avants BB,
    3. Cook PA, et al
    . N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 2010;29:1310–20 doi:10.1109/TMI.2010.2046908 pmid:20378467
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Carass A,
    2. Wheeler MB,
    3. Cuzzocreo JP, et al
    . A joint registration and segmentation approach to skull stripping. http://www.iacl.ece.jhu.edu/~prince/pubs/2007-ISBI-Carass-SkullStripping.pdf. Accessed June 19, 2018.
  31. 31.↵
    1. DeLong E,
    2. DeLong DM,
    3. Clarke-Pearson DL
    . Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44:837–45 doi:10.2307/2531595 pmid:3203132
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Robin X,
    2. Turck N,
    3. Hainard A, et al
    . pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011;12:77 doi:10.1186/1471-2105-12-77 pmid:21414208
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 39 (10)
American Journal of Neuroradiology
Vol. 39, Issue 10
1 Oct 2018
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Automated Integration of Multimodal MRI for the Probabilistic Detection of the Central Vein Sign in White Matter Lesions
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
J.D. Dworkin, P. Sati, A. Solomon, D.L. Pham, R. Watts, M.L. Martin, D. Ontaneda, M.K. Schindler, D.S. Reich, R.T. Shinohara
Automated Integration of Multimodal MRI for the Probabilistic Detection of the Central Vein Sign in White Matter Lesions
American Journal of Neuroradiology Oct 2018, 39 (10) 1806-1813; DOI: 10.3174/ajnr.A5765

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Automated Integration of Multimodal MRI for the Probabilistic Detection of the Central Vein Sign in White Matter Lesions
J.D. Dworkin, P. Sati, A. Solomon, D.L. Pham, R. Watts, M.L. Martin, D. Ontaneda, M.K. Schindler, D.S. Reich, R.T. Shinohara
American Journal of Neuroradiology Oct 2018, 39 (10) 1806-1813; DOI: 10.3174/ajnr.A5765
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Multicenter Automated Central Vein Sign Detection Performs as Well as Manual Assessment for the Diagnosis of Multiple Sclerosis
  • Intensity warping for multisite MRI harmonization
  • The Central Vein Sign in Radiologically Isolated Syndrome
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire