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ABSTRACT

BACKGROUND AND PURPOSE: The central vein sign is a promising MR imaging diagnostic biomarker for multiple sclerosis. Recent studies
have demonstrated that patients with MS have higher proportions of white matter lesions with the central vein sign compared with those
with diseases that mimic MS on MR imaging. However, the clinical application of the central vein sign as a biomarker is limited by interrater
differences in the adjudication of the central vein sign as well as the time burden required for the determination of the central vein sign
for each lesion in a patient’s full MR imaging scan. In this study, we present an automated technique for the detection of the central vein
sign in white matter lesions.

MATERIALS AND METHODS: Using multimodal MR imaging, the proposed method derives a central vein sign probability, �ij, for each
lesion, as well as a patient-level central vein sign biomarker, �i. The method is probabilistic in nature, allows site-specific lesion segmen-
tation methods, and is potentially robust to intersite variability. The proposed algorithm was tested on imaging acquired at the University
of Vermont in 16 participants who have MS and 15 participants who do not.

RESULTS: By means of the proposed automated technique, participants with MS were found to have significantly higher values of � than
those without MS (�MS � 0.55 � 0.18; �non-MS � 0.31 � 0.12; P � .001). The algorithm was also found to show strong discriminative
ability between patients with and without MS, with an area under the curve of 0.88.

CONCLUSIONS: The current study presents the first fully automated method for detecting the central vein sign in white matter lesions
and demonstrates promising performance in a sample of patients with and without MS.

ABBREVIATIONS: CVS � central vein sign; MIMoSA � Method for InterModal Segmentation Analysis

Multiple sclerosis is an inflammatory demyelinating disease

of the central nervous system characterized by lesions in the

brain and spinal cord. Currently, assessment of MR imaging fac-

tors heavily in the diagnosis of MS, with much importance placed

on the distribution (dissemination in space) and time course of

lesions (dissemination in time)1 in patients presenting with clin-

ical symptoms typical for MS. However, current imaging-based

diagnostic criteria favor sensitivity over specificity, making mis-

diagnosis of MS relatively common.2,3 Misdiagnosis is especially

prevalent among disorders that demonstrate white matter lesions

similar to those found in MS.4,5

As a means of distinguishing MS lesions from white matter

abnormalities arising from other diseases, the identification of a

vein traversing the center of a lesion has been proposed as a diag-

nostic tool because inflammatory demyelination in the MS white

matter is perivenular.6,7 The potential for this marker to be used
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in the diagnosis of MS has been advanced by recent developments

in MR imaging pulse sequences, which have enabled detailed im-

aging of veins in the brain.8-10 Using these sequences, researchers

have provided strong evidence that higher proportions of MS le-

sions show the central vein sign (CVS) compared with lesions

resulting from other disease processes commonly mistaken for

MS.7,11-16 This finding has been demonstrated for neuromyelitis

optica spectrum disorder, systemic autoimmune diseases, cere-

bral small vessel disease, Susac syndrome, and migraine. While

further replication in a prospective setting is still necessary, a

high proportion of brain MR imaging lesions demonstrating

the CVS appear to have potential as a biomarker with high

specificity for MS.

Unfortunately, important barriers limit the feasibility of the

clinical application of the CVS. Two such limitations are the pres-

ence of intra- and interrater variability in the subjective assess-

ment of the CVS and the time required to adjudicate the CVS in

every MR imaging lesion per patient. Recent studies have at-

tempted to mitigate the time burden associated with CVS assess-

ment by limiting the number of lesions examined.13,17 However,

these techniques have the potential to increase variability and

have generally not been as successful as the evaluation of the pro-

portion of the CVS in all MR imaging lesions per patient.7,18 Most

important, in studies that adjudicate all lesions per patient, opti-

mal proportion cutoffs have differed across study sites and disease

comparisons.7,13,18 This variability highlights the need for thor-

ough comparison and optimization of these cutoffs across sam-

ples and diseases, yet the same issues of rater subjectivity and

temporal burden make this type of research difficult. Thus, the

current study introduces an algorithm for the automatic determi-

nation of the CVS in white matter lesions and presents a fully

automated patient-level diagnostic biomarker. In this article, we

describe the CVS-detection pipeline, present statistical measures

of judgment accuracy, and discuss the implications and next steps

for this line of research.

MATERIALS AND METHODS
CVS Detection Algorithm
To adjudicate the CVS for each lesion in a given participant, we

perform several steps. We first present the overall summary and

then address each step, with associated rationale, in detail below.

To perform the algorithm, we require a T1-weighted volume, T2-

weighted FLAIR volume, and T2*-weighted segmented echo-pla-

nar imaging volume: 1) A map of the veins present in the T2*-EPI

volume is created using a process referred to as “vesselness filter-

ing,” and the vein map is rigidly registered to the T1 volume. 2)

White matter lesions are segmented using the T1- and T2-FLAIR

volumes. 3) Clear lesion boundaries are then determined using a

process that removes ambiguous boundary voxels. 4) Periven-

tricular lesions are removed from candidacy, per guidelines given

by the North American Imaging in Multiple Sclerosis Coopera-

tive.19 5) A permutation procedure is performed to determine

whether identified veins occur in the center of a given lesion to a

greater degree than would be expected by chance. This yields a

probability of a CVS for each lesion j in patient i’s scan, denoted

�ij. Lesion-level CVS probabilities are then averaged to obtain a

patient-level CVS biomarker, denoted �i. 6) Contributions of the

lesions to the average can be weighted by the noise in their T2*-

EPI intensities to account for scan motion. Figure 1 demonstrates

the steps of the algorithm on a sample lesion. Most important,

while figures are necessarily presented in 2D space, all methods

undertaken for this procedure are conducted in 3D volumetric

space and simultaneously consider all 3 planes of the image.

Vesselness Filtering
Vein maps in the brain are created to later determine the presence

or absence of veins in each lesion. To do this, we applied the

Frangi vesselness filter20 to the unregistered T2*-EPI volume (for

the application to data, this study used the Convert3D Tool;

https://sourceforge.net/projects/c3d/), producing a map of scores

of �0, with scores of 0 implying no vesselness qualities. The

Frangi filter is a vessel-enhancement algorithm based on the

Hessian matrix at each voxel, in which the second-order structure

of the image is obtained through convolution with derivatives of

Gaussian kernels. The scores are calculated using the eigenvalues

of the Hessian matrix, specifically picking up on tubular struc-

tures that are darker (or lighter, depending on the implementa-

tion) than their surroundings. After being obtained in the unreg-

istered T2*-EPI space, these vesselness maps are then rigidly

registered to the T1 space.

Lesion Segmentation
To determine the location and shape of white matter lesions, we

performed automatic lesion segmentation on coregistered T1-

and T2-FLAIR volumes. For the application to data, this study

used the Method for InterModal Segmentation Analysis

(MIMoSA) model21 in the R statistical environment.22 The lesion

segmentation algorithm produces a map containing the probabil-

ity that each voxel is part of a lesion. For the results presented in

this article, a threshold of 0.30 was applied to this probability map

FIG 1. A, Axial slice of a lesion on T2-FLAIR volume. B, Axial slice of a
lesion on T2*-EPI volume. C, MIMoSA lesion-probability map. D, Dis-
tance-to-lesion-boundary mask with the vesselness filter overlay. The
lesion-level CVS probability following permutation was 0.975.
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to create a binary lesion mask. The threshold of 0.30 was chosen

because previous work has found it to be a conservative cutoff that

can limit the amount of false-positive lesion tissue.23,24 Following

the definition of a lesion positive for CVS (CVS�) given by the

North American Imaging in Multiple Sclerosis Cooperative,19 we

removed from candidacy lesions detected by the MIMoSA model

of �3 mm in any plane.

Lesion-Boundary Determination
Thresholding of the lesion-probability map often results in patho-

logically distinct lesions being connected by ambiguous boundary

voxels. For these lesions to be properly assessed for the CVS, the

proposed algorithm addresses this pseudoconfluence through a

recently described technique that removes voxels that are con-

necting pathologically distinct lesions.24 The technique works by

finding regions in which the texture of the lesion-probability map

resembles the center of a lesion. Therefore, the centers that it

produces are maintained and used for investigating the CVS for

the remainder of this algorithm. Further detail on the implemen-

tation of this method can be found in the original publication.24

Because the North American Imaging in Multiple Sclerosis

guidelines call for the exclusion of confluent lesions, the removal

of connecting voxels may represent a deviation from these guide-

lines in cases of true confluence. However, many lesions that

would be judged discrete by expert raters are often merged by

automated segmentation methods.25 This merging can result

in drastic and unrealistic degrees of pseudoconfluence in au-

tomated lesion masks, sometimes resulting in �50 distinct le-

sions being merged into �10 lesion components.24 Thus, rely-

ing on automated determinations of confluence in automated

lesion masks would likely result in the exclusion of many or

most eligible lesions.

Periventricular Lesion Exclusion
The density and branching nature of veins near the ventricles

makes assessment for the CVS difficult in periventricular lesions,

especially in cases in which �1 distinct vein traverses the lesion.

Thus, the North American Imaging in Multiple Sclerosis Cooper-

ative recommends excluding lesions with �1 vein or with branch-

ing veins.19 The proposed algorithm addresses this consideration

by excluding periventricular lesions because periventricular le-

sions typically contain multiple veins. This exclusion is done by

performing tissue-class segmentation on the T1 volumes (for the

application to data, this study used the FMRIB Automated

Segmentation Tool; FAST; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

fast)26, expanding the CSF region of the brain by 3 mm and elim-

inating lesions from the lesion-center mask that overlap the ex-

panded CSF region. The choice of a 3-mm expansion was made

on the basis of visual inspection of randomly selected T2*-EPI

volumes, for which 3 mm appeared to include most of the branch-

ing vein structure discussed in the consensus statement, without

removing too much of the deep white matter. Notably, although

this technique excludes periventricular lesions, it does not exclude

other lesions that may have multiple veins. This issue represents a

second deviation from the North American Imaging in Multiple

Sclerosis recommendations, which could potentially be addressed

by future advances in methods for segmenting and counting dis-

tinct veins.

CVS Permutation Procedure
In lesions that contain central veins, one would expect above-

average coherence between the centrality of voxels within the le-

sion and their vesselness score. The proposed permutation proce-

dure takes advantage of that expectation to examine the degree to

which the most veinlike voxels of a lesion are more concentrated

in the center of the lesion than one might expect to observe by

chance. First, a vein-center coherence score for lesion j in patient

i’s scan, Cij, is calculated by summing the products of the distance-

to-nearest-lesion-boundary of each voxel (ie, centrality) score,

dijv, and its Frangi vesselness score, fijv. The coherence formula is

given by

C ij � �v�V d ijv 	 f ijv,

where V is the set of all voxels in lesion j. Thus, higher values of

this score indicate that the highest vesselness values within the

lesion tend to occur in the same voxels as the highest centrality

values.

A lesion-specific null distribution of coherence scores is cre-

ated using 1000 random permutations to determine the degree to

which this score deviates from chance in cases in which there is no

biologic correspondence between vesselness and location within

lesions. For each permutation, p, the vesselness scores of the vox-

els in lesion j are randomly resampled without replacement, yield-

ing a randomly ordered set of values, V*p. A null coherence score is

then calculated using the formula,

C*ijp � �v�V,r�V*p d ijv 	 f ijr.

This permutation procedure is performed 1000 times, resulting in

a sample of 1000 null coherence scores. The lesion-level CVS

probability, �ij, is then calculated as the proportion of chance

(null-distributed) CVS scores that are smaller than the observed

score, given by

�ij �
1

1000 �p � 1
1000 I�C*ijp � Cij�.

To obtain a subject-level CVS biomarker, �i, these probabilities

are averaged over all lesions observed in patient i. The formula for

�i, is given by

�i �
1

NL
�j�L �ij,

where NL is the number of candidate lesions in patient i’s scan.

The biomarker, �i, can be roughly interpreted as the proportion

of the patient’s lesions that demonstrate the CVS.

Optional Noise Weighting
When one takes the average of the CVS probabilities for a patient’s

lesions, some lesions may have more reliable estimates than oth-

ers. A more stable biomarker can potentially be obtained by

weighting each lesion’s contribution to the biomarker by the

amount of noise in the voxels of the lesion on the T2*-EPI vol-

ume. To estimate the level of noise in a lesion, we first constructed

a “noiseless” T2*-EPI by performing anisotropic diffusion on the
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original scan.27 This procedure results in a smoothed volume that

maintains tissue boundaries and other image gradients. Then, for

voxels in the lesion, the difference is obtained between the original

T2*-EPI and the smoothed T2*-EPI. A noise value is finally cal-

culated by dividing the sum of the squared voxel differences by the

total number of voxels in the lesion. For lesion j, this value is

defined as

n ij �
1

NV
�v�V�Iv 
 Iv

s�2

where Iv and Iv
s are the intensity and smoothed intensity of voxel v,

respectively. The desired reliability weight is simply the inverse of

this noise value,

w ij �
1

n ij
.

A weighted subject-level biomarker, �i
w, is then calculated by

summing the products of the CVS probabilities of the lesions with

their weights and dividing by the sum of the weights. The

weighted biomarker is given by

�i
w �

�j�L �ij 	 wij�j�L wij.

Implementation and Software
Accompanying this article, code for the central vein detection

algorithm has been made freely available on-line (https://github.

com/jdwor/cvs). One file, centralveins_full.R, contains code to

run all preprocessing and analysis steps described in the previous

section. This file serves to increase the understanding of all steps

used in this study and to provide a straightforward tool that can be

applied to raw images. A second file, centralveins_simple.R, con-

tains code to be run directly on a probability map and a vein map.

This file serves to improve implementations across different sites

and scanners, for which researchers and clinicians may have pre-

ferred pipelines for preprocessing and lesion segmentation. Fol-

lowing preprocessing and structure segmentation, the cen-

tralveins_simple function was found to take an average of 17.7 �

9.1 minutes and was roughly broken down as a 10-minute base-

line with an additional 20 seconds per lesion when run without

parallelization. Finally, a third file, helperfunctions.R, provides

additional functions used within the previous 2 files.

Validation

Data. For this study, data were analyzed for 40 research partici-

pants recruited from the University of Vermont neurology clinic

as part of a study aiming to improve the diagnostic specificity for

MS.17 Participants were between 20 and 67 years of age, and 37

were women. Ten had MS and no comorbidities known to pro-

duce MR imaging white matter abnormalities; 10 had MS and

comorbidities known to produce MR imaging white matter ab-

normalities; 10 had migraine with MR imaging white matter ab-

normalities and no other white matter comorbidities; and 10 were

previously incorrectly diagnosed with MS and had MR imaging

white matter abnormalities and a variety of diagnoses (Table 1).

Whole-brain 3D-T2-FLAIR, T1, and T2*-EPI28 volumes were

acquired on a 3T dStream MR imaging scanner (Philips Health-

care, Best, the Netherlands) with a 32-channel dStream head coil.

FLAIR and T1 volumes were obtained with 1-mm isotropic reso-

lution, and T2*-EPI volumes were obtained with 0.55-mm isotro-

pic resolution. N4 bias correction29 was performed on all images,

and the T2-FLAIR volume for each participant was interpolated

to a voxel size of 1 mm3 and rigidly coregistered to the T1 volume.

Extracerebral voxels were removed from the T1 volume using a

skull-stripping procedure,30 and the brain mask was applied to

the T2-FLAIR volume.

Motion-Exclusion Criteria. Because head motion might occur

during the T2*-EPI scan, potentially producing uninterpretable

images, each participant’s T2*-EPI scan was manually rated for

motion in the relevant white matter regions. Scans were scored

from 1 to 5: One indicated “perfect, no artifacts, and excellent

signal-to-noise,” 2 indicated “only 1 minor artifact that does not

obscure any vessels in supratentorial white matter,” 3 indicated

“more than 1 artifact that does not obscure any vessels in supra-

tentorial white matter,” 4 indicated “more than 1 artifact that

does obscure some vessels in supratentorial white matter,” and 5

indicated “severe artifacts or bad signal-to-noise that does ob-

scure most vessels in supratentorial white matter.” It was decided

a priori that scans that were rated 5 would be removed for the

primary analysis because scans with that degree of motion may be

unusable in clinical practice as well.

Performance Assessment. Because the CVS shows great promise

as a diagnostic biomarker, the performance of this algorithm in

distinguishing MS and non-MS is of primary interest. To deter-

mine whether the automated biomarkers, �i and �i
w, replicate the

findings from previous work that the distribution of manually

adjudicated central vein proportion differs between MS and its

mimics, we used t tests to compare the automated CVS values for

patients with and without MS. To determine the diagnostic utility

of �i and �i
w, we estimated the area under the curve values of the

receiver operating characteristic curves. The presence of a differ-

ence in performance between �i and �i
w was tested with the

DeLong test for comparing the areas under correlated receiver

operating characteristic curves31 using the pROC package in the R

statistical environment.22,32 Sensitivity and specificity were calcu-

Table 1: Demographics of the study samplea

Demographics
MS (n � 10)

Age (yr) 44 (16)
Sex 9/10 Female
Disease duration (yr) 9 (7)
Disease subtype 10/10 RRMS

MS with comorbidities (n � 10)
Age (yr) 43 (9)
Sex 9/10 Female
Disease duration (yr) 9 (6)
Disease subtype 10/10 RRMS

Migraine (n � 10)
Age (yr) 47 (13)
Sex 10/10 Female

Misdiagnosed with MS (n � 10)
Age (yr) 53 (7)
Sex 9/10 Female

Note:—RRMS indicates relapsing-remitting MS.
a The numbers in parentheses are standard deviations.
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lated using the 40% cutoff,7 under which inflammatory demyeli-

nation is diagnosed if �40% of white matter lesions exhibit the

CVS, as well as the more recently proposed 50% cutoff.18 Addi-

tionally, locally optimal cutoffs were determined, and their sensi-

tivity and specificity values were compared with those obtained

using established cutoffs.

Finally, these cutoffs were compared with the performance of

proportion cutoffs applied to manual determinations of the CVS

in previous research,7,13,18 as well as the performance of 3 recently

proposed clinical decision rules that do not require the assessment

of the full set of lesions in a scan. The first such rule, referred to as

the rule of 6,13 states that inflammatory demyelination is diag-

nosed if there are �6 lesions with the CVS or if more than half of

lesions show the CVS. The second and third, referred to as se-

lect315 and select3*,17 state that inflammatory demyelination is

diagnosed if the CVS is found in at least 2 of 3 lesions preselected

on T2-FLAIR and FLAIR*9 imaging, respectively.

RESULTS
Following manual ratings of scan noise due to motion, 9 partici-

pants were excluded and 31 remained for the primary analysis. Of

the remaining 31 participants, 16 had MS and 15 did not. Auto-

mated CVS detection was performed on these 31 participants us-

ing the algorithms and software packages described in the previ-

ous section. Two-sample t tests were run to determine whether

the automated CVS scores differed between the 16 cases with MS

and 15 cases without MS. In both the unweighted (MMS � 0.56 �

0.17; Mnon-MS � 0.37 � 0.12; P � .01) and weighted (MMS �

0.55 � 0.18; Mnon-MS � 0.31 � 0.12; P � .001) variants of the

algorithm, the within-patient average CVS probabilities were

higher in patients with MS compared with patients without MS.

See Fig 2 for breakdowns across all 4 groups.

To determine the diagnostic utility of the automated biomark-

ers, �i and �i
w, we estimated receiver operating characteristic

curves and calculated their areas under the curve. For the un-

weighted case, �i yielded an area under the curve of 0.84 (Fig 3A).

On the basis of the 40% rule, applying a cutoff of 0.40 to �i yielded

a sensitivity of 0.94 and a specificity of 0.67. On the basis of the

50% rule, applying a cutoff of 0.50 to this biomarker yielded a

sensitivity of 0.56 and a specificity of 0.80. Three locally optimal

cutoffs appear to occur at 0.38, at which sensitivity was 1.00 and

specificity was 0.67; at 0.44, at which sensitivity was 0.75 and spec-

ificity was 0.73; and at 0.50, at which sensitivity was 0.56 and

specificity was 0.80 (Table 2).

For the noise-weighted case, �i
w yielded an area under the

curve of 0.88 (Fig 3B). Applying a cutoff of 0.40 to �i
w yielded a

sensitivity of 0.75 and a specificity of 0.73. Applying a cutoff of

0.50 yielded a sensitivity of 0.56 and a specificity of 0.93. Two

locally optimal cutoffs for �i
w appeared to occur at 0.37, at which

sensitivity was 0.94 and specificity was 0.73, and at 0.46, at which

sensitivity was 0.63 and specificity was 0.93 (Table 2). Although

the weighting appeared to produce marginally improved perfor-

mance, no significant difference was found using the DeLong test

(Z � 0.77, P � .22). Robustness analysis on the full sample of 40

participants after reintroducing the motion-obscured scans

showed area under the curve values of 0.77 and 0.81 for �i and �i
w,

respectively.

Previous studies that used CVS proportions within patients’

full sets of lesions obtained optimal sensitivity/specificity of 1.00/

1.00 when comparing cases of MS with undiagnosed cases with-

out MS,7 patients with microangiopathic lesions,13 and patients

with inflammatory vasculopathies.18 Prior research on a subset of

the current sample was unable to obtain perfect discrimination

FIG 2. Boxplots of the patient-level central vein sign biomarker score by diagnostic group. The score can be interpreted as the proportion of
lesions that are CVS� according to the method described in this article. Groups shaded gray do not have an MS diagnosis, whereas groups
shaded gold do. A, Boxplots for the unweighted biomarker. B, Boxplots for the noise-weighted biomarker. Points outside the boxplots represent
outliers within their respective groups.
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between patients with MS and those with migraine when adjudi-

cating the CVS for all lesions.15 Compared with cutoffs that used

the full set of lesions, decision rules based on a subset of lesions

were generally less discriminative between participants with and

without MS. The rule of 6 did obtain a sensitivity/specificity of

1.00/1.00 for distinguishing patients with MS and those with

small-vessel ischemia,13 yet in the current sample of MS, mi-

graine, and misdiagnosed patients, the select3 procedure obtained

a sensitivity/specificity of 0.81/0.95 and the select3* procedure

obtained a sensitivity/specificity of 0.81/0.83.17

DISCUSSION
Preliminary studies have proposed and validated CVS as a prom-

ising biomarker for differentiation of MS from other diseases that

cause MR imaging white matter abnormalities.7,15,19 Yet concerns

remain regarding the heavy temporal burden on manual adjudi-

cation of CVS as well as the subjective differences that may arise in

response to variation in the adjudicators’ time constraints and

intuition. This study sought to address

these issues by introducing an algorithm

for automated CVS detection that could,

in principle, following further valida-

tion, be applied in clinical practice.

In the primary analysis, the algo-

rithm was tested on a cohort of 16 pa-

tients with MS (8 with and 8 without

other white matter comorbidities) and

15 patients without MS (8 with migraine

and 7 misdiagnosed with MS). The fully

automated technique replicated previ-

ous work that used manual adjudica-

tions7,11-16 by demonstrating that pro-

portions of lesions with the CVS differ

significantly between MS and its mim-

ics. Additionally, the automated bio-

markers, �i and �i
w, were found to have

strong diagnostic ability, with areas un-

der the curve of 0.84 and 0.88 and opti-

mal sensitivity/specificity of approxi-

mately 0.94/0.70. There is also great

promise for this algorithm to perform

consistently across study sites and

MR imaging scanners because in-house

preprocessing and lesion-segmentation

methods can be easily substituted and

the remaining steps (obtaining vessel-

ness scores, finding lesion centers, and

calculating CVS probabilities) do not re-

quire parameter tuning.

Most important, the automated bio-

markers presented in this study did not

perform as well as previously obtained

proportions of the CVS based on man-

ual ratings of all lesions in patients’

scans. Specifically, the 40% and 50%

cutoffs used in prior manually rated

studies often achieved perfect discrimi-

nation between patients with and without MS,7,18 which the au-

tomated biomarkers were not able to replicate. However, previ-

ous work in a subset of the current sample showed that manual

ratings of all lesions did not fully distinguish patients with migraine

from those with MS and no white-matter comorbidities.15 This find-

ing suggests that the patients without MS in the current sample might

be more difficult to distinguish from those with MS using the CVS

alone than the patients without MS in the studies that did obtain

perfect discrimination.

Additionally, although the sensitivity and specificity obtained

by these biomarkers were lower than those in the manually ob-

tained CVS proportions, the biomarkers performed comparably

with decision rules that use only a subset of lesions in a scan.17

Thus, while automated adjudication of every lesion in a scan is not

yet as accurate as manual adjudication of every lesion in a scan, the

proposed automated method shows promise as an alternative to

other clinically feasible methods for identifying inflammatory de-

FIG 3. Receiver operating characteristic curves of MS diagnosis based on patient-level auto-
mated CVS biomarker scores. The receiver operating characteristic curve for the unweighted
biomarker is shaded blue, and the receiver operating characteristic curve for the weighted bio-
marker is shaded green. The area under the curve (AUC) values for both curves are displayed in
their respective colors.

Table 2: Diagnostic performance of weighted and unweighted biomarkersa

Threshold Sensitivity Specificity
Unweighted biomarker (�i) 0.38 1.00 (0.75–1.00) 0.67 (0.42–0.84)

0.40 0.94 (0.70–1.00) 0.67 (0.42–0.84)
0.44 0.75 (0.50–0.90) 0.73 (0.47–0.89)
0.50 0.56 (0.25–0.65) 0.80 (0.58–0.94)

Weighted biomarker (�i
w) 0.37 0.94 (0.70–1.00) 0.73 (0.42–0.84)

0.40 0.75 (0.50–0.90) 0.73 (0.42–0.84)
0.46 0.63 (0.40–0.80) 0.93 (0.68–1.00)
0.50 0.56 (0.35–0.75) 0.93 (0.74–1.00)

a Data in column 2 represent the given cutoff values; data in parentheses are the relevant 95% confidence intervals.
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myelination. Further study and refinement of this technique have

the potential to yield biomarkers that are both feasible for use in

the clinic and comparable in accuracy and reliability with CVS

proportions obtained by manual adjudication.

There are several important limitations to the proposed algo-

rithm. First, biomarker values were found to be lower than previ-

ously reported CVS proportions for patients with MS and higher

than previously reported CVS proportions for those without MS.

It is possible that this effect is due to errors in lesion segmentation,

which would pull the values of participants with and without MS

toward each other due to the assessment of noninformative false-

positive lesions. Because this method allows in-house lesion seg-

mentation algorithms to be applied, the impact of false-positive

lesions could potentially be mitigated in practice. It is also possible

that the effect is due to false-positives or false-negatives in auto-

mated CVS assessment. Future work will use manual lesion-level

assessments to tease apart these potential sources.

Additionally, the exclusion of 9 of the 40 subjects due to noise

in the T2*-EPI scan represents a potential weakness of this auto-

mated method. However, robustness analysis found that the per-

formance of the method on the full sample was not drastically

reduced compared with the high-quality subset. This finding sug-

gests that in clinical practice, a great deal of motion would not

render a scan useless but instead may be an additional consider-

ation for clinicians when interpreting the results of the algorithm.

CONCLUSIONS
Although the potential clinical implications of an automated tool

for CVS adjudication call for further study and refinement of such

techniques, the current study demonstrates the promising perfor-

mance of a fully automated method for detecting CVS in white

matter lesions. To our knowledge, this is the first automated tech-

nique for this challenging aspect of MS diagnosis and represents

an important step forward toward a specific MR imaging bio-

marker for MS lesions.
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