Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain
Open Access

Systematic Literature Review of Machine Learning Algorithms Using Pretherapy Radiologic Imaging for Glioma Molecular Subtype Prediction

Jan Lost, Tej Verma, Leon Jekel, Marc von Reppert, Niklas Tillmanns, Sara Merkaj, Gabriel Cassinelli Petersen, Ryan Bahar, Ayyüce Gordem, Muhammad A. Haider, Harry Subramanian, Waverly Brim, Ichiro Ikuta, Antonio Omuro, Gian Marco Conte, Bernadette V. Marquez-Nostra, Arman Avesta, Khaled Bousabarah, Ali Nabavizadeh, Anahita Fathi Kazerooni, Sanjay Aneja, Spyridon Bakas, MingDe Lin, Michael Sabel and Mariam Aboian
American Journal of Neuroradiology September 2023, DOI: https://doi.org/10.3174/ajnr.A8000
Jan Lost
aFrom the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut
bDepartment of Neurosurgery (J.L., M.S.), Heinrich-Heine-University, Duesseldorf, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jan Lost
Tej Verma
aFrom the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Tej Verma
Leon Jekel
aFrom the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marc von Reppert
aFrom the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Marc von Reppert
Niklas Tillmanns
aFrom the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Niklas Tillmanns
Sara Merkaj
aFrom the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sara Merkaj
Gabriel Cassinelli Petersen
aFrom the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Gabriel Cassinelli Petersen
Ryan Bahar
aFrom the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ryan Bahar
Ayyüce Gordem
aFrom the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ayyüce Gordem
Muhammad A. Haider
aFrom the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Harry Subramanian
aFrom the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Harry Subramanian
Waverly Brim
aFrom the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ichiro Ikuta
cDepartment of Radiology (I.I.), Mayo Clinic Arizona, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ichiro Ikuta
Antonio Omuro
dDepartment of Neurology and Yale Cancer Center (A.O.), Yale School of Medicine, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Antonio Omuro
Gian Marco Conte
eDepartment of Radiology (G.M.C.), Mayo Clinic, Rochester, Minesotta
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Gian Marco Conte
Bernadette V. Marquez-Nostra
aFrom the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Arman Avesta
aFrom the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Arman Avesta
Khaled Bousabarah
fVisage Imaging Inc (K.B., M.L.), San Diego, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ali Nabavizadeh
gDepartment of Radiology (A.N.), Perelman School of Medicine, Hospital of University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anahita Fathi Kazerooni
hDepartment of Neurosurgery (A.F.K.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
iDivision of Neurosurgery (A.F.K.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
jCenter for Data-Driven Discovery (A.F.K.), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Anahita Fathi Kazerooni
Sanjay Aneja
kDepartment of Therapeutic Radiology (S.A), Yale School of Medicine, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sanjay Aneja
Spyridon Bakas
lCenter for Biomedical Image Computing and Analytics (S.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
mRichards Medical Research Laboratories (S.B.), Philadelphia, Pennsylvania
nDepartment of Radiology (S.B.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Spyridon Bakas
MingDe Lin
aFrom the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut
fVisage Imaging Inc (K.B., M.L.), San Diego, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for MingDe Lin
Michael Sabel
bDepartment of Neurosurgery (J.L., M.S.), Heinrich-Heine-University, Duesseldorf, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mariam Aboian
aFrom the Department of Radiology and Biomedical Imaging (J.L., T.V., L.J., M.v.R., N.T., S.M., G.C.P., R.B., A.G., M.A.H., H.S., W.B., B.V.M.-N., A.A., M.L., M.A.), Yale School of Medicine, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Mariam Aboian
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Norden AD,
    2. Wen PY
    . Glioma therapy in adults. Neurologist 2006;12:279–92 doi:10.1097/01.nrl.0000250928.26044.47 pmid:17122724
    CrossRefPubMedWeb of Science
  2. 2.↵
    Johns Hopkins Medicine. Gliomas. June 27, 2022. https://www.hopkinsmedicine.org/health/conditions-and-diseases/gliomas. Accessed June 27, 2022
  3. 3.↵
    1. Louis DN,
    2. Perry A,
    3. Wesseling P, et al
    . The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 2021;23:1231–51 doi:10.1093/neuonc/noab106 pmid:34185076
    CrossRefPubMed
  4. 4.↵
    1. Parker NR,
    2. Khong P,
    3. Parkinson JF, et al
    . Molecular heterogeneity in glioblastoma: potential clinical implications. Front Oncol 2015;5:55 doi:10.3389/fonc.2015.00055 pmid:25785247
    CrossRefPubMed
  5. 5.↵
    1. Friedmann-Morvinski D
    . Glioblastoma heterogeneity and cancer cell plasticity. Crit Rev Oncog 2014;19:327–36 doi:10.1615/critrevoncog.2014011777 pmid:25404148
    CrossRefPubMed
  6. 6.↵
    1. Olar A,
    2. Aldape KD
    . Using the molecular classification of glioblastoma to inform personalized treatment. J Pathol 2014;232:165–77 doi:10.1002/path.4282 pmid:24114756
    CrossRefPubMed
  7. 7.↵
    1. Tillmanns N,
    2. Lum AE,
    3. Cassinelli S, et al
    . Identifying clinically applicable machine learning algorithms for glioma segmentation: recent advances and discoveries. Neurooncol Adv 2022;4:vdac093 doi:10.1093/noajnl/vdac093 pmid:36071926
    CrossRefPubMed
  8. 8.↵
    1. Bakas S,
    2. Reyes M,
    3. Jakab A, et al
    . Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation: Progression Assessment, and Overall Survival Prediction in the BRATS Challenge. 2019. arxiv.org/abs/1811.02629. Accesed June 27, 2022
  9. 9.↵
    1. Jekel L,
    2. Brim WR,
    3. von Reppert M, et al
    . Machine learning applications for differentiation of glioma from brain metastasis: a systematic review. Cancers(Basel) 2022;14:1369 doi:10.3390/cancers14061369 pmid:35326526
    CrossRefPubMed
  10. 10.↵
    1. Cassinelli Petersen GI,
    2. Shatalov J,
    3. Verma T, et al
    . Machine learning in differentiating gliomas from primary CNS lymphomas: a systematic review, reporting quality, and risk of bias assessment. AJNR Am J Neuroradiol 2022;43:526–33 doi:10.3174/ajnr.A7473 pmid:35361577
    Abstract/FREE Full Text
  11. 11.↵
    1. Bahar RC,
    2. Merkaj S,
    3. Cassinelli Petersen GI, et al
    . Machine learning models for classifying high- and low-grade gliomas: a systematic review and quality of reporting analysis. Front Oncol 2022;12:856231 doi:10.3389/fonc.2022.856231 pmid:35530302
    CrossRefPubMed
  12. 12.↵
    1. Sanghani P,
    2. Ang BT,
    3. King NK, et al
    . Overall survival prediction in glioblastoma multiforme patients from volumetric, shape and texture features using machine learning. Surg Oncol 2018;27:709–14 doi:10.1016/j.suronc.2018.09.002 pmid:30449497
    CrossRefPubMed
  13. 13.↵
    1. Bakas S,
    2. Shukla G,
    3. Akbari H, et al
    . Overall survival prediction in glioblastoma patients using structural magnetic resonance imaging (MRI): advanced radiomic features may compensate for lack of advanced MRI modalities. J Med Imaging (Bellingham) 2020;7:031505 doi:10.1117/1.JMI.7.3.031505 pmid:32566694
    CrossRefPubMed
  14. 14.↵
    1. Clark K,
    2. Vendt B,
    3. Smith K, et al
    . The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 2013;26:1045–57 doi:10.1007/s10278-013-9622-7 pmid:23884657
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Heus P,
    2. Damen J,
    3. Pajouheshnia R, et al
    . Uniformity in measuring adherence to reporting guidelines: the example of TRIPOD for assessing completeness of reporting of prediction model studies. BMJ Open 2019;9:e025611 doi:10.1136/bmjopen-2018-025611 pmid:31023756
    Abstract/FREE Full Text
  16. 16.↵
    1. Mongan J,
    2. Moy L,
    3. Kahn CE Jr.
    Checklist for Artificial Intelligence in Medical Imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell 2020;2:e200029 doi:10.1148/ryai.2020200029 pmid:33937821
    CrossRefPubMed
  17. 17.↵
    1. Moons KG,
    2. Wolff RF,
    3. Riley RD, et al
    . PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration. Ann Intern Med 2019;170:W1–33 doi:10.7326/M18-1377 pmid:30596876
    CrossRefPubMed
  18. 18.↵
    1. Li YM,
    2. Suki D,
    3. Hess K, et al
    . The influence of maximum safe resection of glioblastoma on survival in 1229 patients: can we do better than gross-total resection? J Neurosurg 2016;124:977–88 doi:10.3171/2015.5.JNS142087 pmid:26495941
    CrossRefPubMed
  19. 19.↵
    1. Hegi ME,
    2. Diserens AC,
    3. Gorlia T, et al
    . MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005;352:997–1003 doi:10.1056/NEJMoa043331 pmid:15758010
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Fukuma R,
    2. Yanagisawa T,
    3. Kinoshita M, et al
    . Prediction of IDH and TERT promoter mutations in low-grade glioma from magnetic resonance images using a convolutional neural network. Sci Rep 2019;9:20311 doi:10.1038/s41598-019-56767-3 pmid:31889117
    CrossRefPubMed
  21. 21.↵
    1. Ren Y,
    2. Zhang X,
    3. Rui W, et al
    . Noninvasive prediction of IDH1 mutation and ATRX expression loss in low-grade gliomas using multiparametric MR radiomic features. J Magn Reson Imaging 2019;49:808–17 doi:10.1002/jmri.26240 pmid:30194745
    CrossRefPubMed
  22. 22.↵
    1. Zhang X,
    2. Tian Q,
    3. Wang L, et al
    . Radiomics strategy for molecular subtype stratification of lower-grade glioma: detecting IDH and TP53 mutations based on multimodal MRI. J Magn Reson Imaging 2018;48:916–26 doi:10.1002/jmri.25960 pmid:29394005
    CrossRefPubMed
  23. 23.↵
    1. Gao M,
    2. Huang S,
    3. Pan X, et al
    . Machine learning-based radiomics predicting tumor grades and expression of multiple pathologic biomarkers in gliomas. Front Oncol 2020;10:1676 doi:10.3389/fonc.2020.01676 pmid:33014836
    CrossRefPubMed
  24. 24.↵
    1. Lu CF,
    2. Hsu FT,
    3. Hsieh KL, et al
    . Machine learning-based radiomics for molecular subtyping of gliomas. Clin Cancer Res 2018;24:4429–36 doi:10.1158/1078-0432.CCR-17-3445 pmid:29789422
    Abstract/FREE Full Text
  25. 25.↵
    1. Chen X,
    2. Zeng M,
    3. Tong Y, et al
    . Automatic prediction of MGMT status in glioblastoma via deep learning-based MR image analysis. Biomed Res Int 2020;2020:9258649 doi:10.1155/2020/9258649 pmid:33029531
    CrossRefPubMed
  26. 26.↵
    1. Li Y,
    2. Wei D,
    3. Liu X, et al
    . Molecular subtyping of diffuse gliomas using magnetic resonance imaging: comparison and correlation between radiomics and deep learning. Eur Radiol 2022;32:747–58 doi:10.1007/s00330-021-08237-6 pmid:34417848
    CrossRefPubMed
  27. 27.↵
    1. Hedyehzadeh M,
    2. Maghooli K,
    3. MomenGharibvand M, et al
    . A comparison of the efficiency of using a deep CNN approach with other common regression methods for the prediction of EGFR expression in glioblastoma patients. J Digit Imaging 2020;33:391–98 doi:10.1007/s10278-019-00290-4 pmid:31797142
    CrossRefPubMed
  28. 28.↵
    1. Akbari H,
    2. Bakas S,
    3. Pisapia JM, et al
    . In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature. Neuro Oncol 2018;20:1068–79 doi:10.1093/neuonc/noy033 pmid:29617843
    CrossRefPubMed
  29. 29.↵
    1. Park JE,
    2. Kim HS,
    3. Park SY, et al
    . Prediction of core signaling pathway by using diffusion- and perfusion-based MRI radiomics and next-generation sequencing in isocitrate dehydrogenase wild-type glioblastoma. Radiology 2020;294:388–97 doi:10.1148/radiol.2019190913 pmid:31845844
    CrossRefPubMed
  30. 30.↵
    1. Sun Z,
    2. Li Y,
    3. Wang Y, et al
    . Radiogenomic analysis of vascular endothelial growth factor in patients with diffuse gliomas. Cancer Imaging 2019;19:68 doi:10.1186/s40644-019-0256-y pmid:31639060
    CrossRefPubMed
  31. 31.↵
    1. Buda M,
    2. AlBadawy EA,
    3. Saha A, et al
    . Deep radiogenomics of lower-grade gliomas: convolutional neural networks predict tumor genomic subtypes using MR images. Radiol Artif Intell 2020;2:e180050 doi:10.1148/ryai.2019180050 pmid:33937809
    CrossRefPubMed
  32. 32.↵
    1. Li Y,
    2. Liang Y,
    3. Sun Z, et al
    . Radiogenomic analysis of PTEN mutation in glioblastoma using preoperative multi-parametric magnetic resonance imaging. Neuroradiology 2019;61:1229–37 doi:10.1007/s00234-019-02244-7 pmid:31218383
    CrossRefPubMed
  33. 33.↵
    1. Wagner MW,
    2. Hainc N,
    3. Khalvati F, et al
    . Radiomics of pediatric low-grade gliomas: toward a pretherapeutic differentiation of BRAF-mutated and BRAF-fused tumors. AJNR Am J Neuroradiol 2021;42:759–65 doi:10.3174/ajnr.A6998 pmid:33574103
    Abstract/FREE Full Text
  34. 34.↵
    1. Jian A,
    2. Jang K,
    3. Manuguerra M, et al
    . Machine learning for the prediction of molecular markers in glioma on magnetic resonance imaging: a systematic review and meta-analysis. Neurosurgery 2021;89:31–44 doi:10.1093/neuros/nyab103 pmid:33826716
    CrossRefPubMed
  35. 35.↵
    1. Cabitza F,
    2. Campagner A,
    3. Soares F, et al
    . The importance of being external. Methodological insights for the external validation of machine learning models in medicine. Comput Methods Programs Biomed 2021;208:106288 doi:10.1016/j.cmpb.2021.106288 pmid:34352688
    CrossRefPubMed
  36. 36.↵
    1. Rieke N,
    2. Hancox J,
    3. Li W, et al
    . The future of digital health with federated learning. NPJ Digit Med 2020;3:119 doi:10.1038/s41746-020-00323-1 pmid:33015372
    CrossRefPubMed
  37. 37.↵
    1. Sheller MJ,
    2. Edwards B,
    3. Reina GA, et al
    . Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci Rep 2020;10:12598 doi:10.1038/s41598-020-69250-1 pmid:32724046
    CrossRefPubMed
  38. 38.↵
    1. Pfitzner B,
    2. Steckhan N,
    3. Arnrich B
    . Federated learning in a medical context: a systematic literature review. ACM Trans Internet Technol 2021;21:1–31 doi:10.1145/3412357
    CrossRef
  39. 39.↵
    1. Baid U,
    2. Ghodasara S,
    3. Mohan S, et al
    . The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification. Computer Vision and Pattern Recognition. 2021. https://arxiv.org/abs/2107.02314. Accessed June 27, 2022
  40. 40.↵
    1. Menze BH,
    2. Jakab A,
    3. Bauer S, et al
    . The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans Med Imaging 2015;34:1993–2024 doi:10.1109/TMI.2014.2377694 pmid:25494501
    CrossRefPubMed
  41. 41.↵
    1. Bakas S,
    2. Akbari H,
    3. Sotiras A, et al
    . Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data 2017;4:170117 doi:10.1038/sdata.2017.117 pmid:28872634
    CrossRefPubMed
  42. 42.↵
    RSNA-MICCAI Brain Tumor Radiogenomic Classification. July 13, 2021 to October 15, 2021. https://www.kaggle.com/c/rsna-miccai-brain-tumor-radiogenomic-classification. Accessed June 27, 2022
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Systematic Literature Review of Machine Learning Algorithms Using Pretherapy Radiologic Imaging for Glioma Molecular Subtype Prediction
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Jan Lost, Tej Verma, Leon Jekel, Marc von Reppert, Niklas Tillmanns, Sara Merkaj, Gabriel Cassinelli Petersen, Ryan Bahar, Ayyüce Gordem, Muhammad A. Haider, Harry Subramanian, Waverly Brim, Ichiro Ikuta, Antonio Omuro, Gian Marco Conte, Bernadette V. Marquez-Nostra, Arman Avesta, Khaled Bousabarah, Ali Nabavizadeh, Anahita Fathi Kazerooni, Sanjay Aneja, Spyridon Bakas, MingDe Lin, Michael Sabel, Mariam Aboian
Systematic Literature Review of Machine Learning Algorithms Using Pretherapy Radiologic Imaging for Glioma Molecular Subtype Prediction
American Journal of Neuroradiology Sep 2023, DOI: 10.3174/ajnr.A8000

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Systematic Literature Review of Machine Learning Algorithms Using Pretherapy Radiologic Imaging for Glioma Molecular Subtype Prediction
Jan Lost, Tej Verma, Leon Jekel, Marc von Reppert, Niklas Tillmanns, Sara Merkaj, Gabriel Cassinelli Petersen, Ryan Bahar, Ayyüce Gordem, Muhammad A. Haider, Harry Subramanian, Waverly Brim, Ichiro Ikuta, Antonio Omuro, Gian Marco Conte, Bernadette V. Marquez-Nostra, Arman Avesta, Khaled Bousabarah, Ali Nabavizadeh, Anahita Fathi Kazerooni, Sanjay Aneja, Spyridon Bakas, MingDe Lin, Michael Sabel, Mariam Aboian
American Journal of Neuroradiology Sep 2023, DOI: 10.3174/ajnr.A8000
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (4)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Clustering Functional Magnetic Resonance Imaging Time Series in Glioblastoma Characterization: A Review of the Evolution, Applications, and Potentials
    Matteo De Simone, Giorgio Iaconetta, Giuseppina Palermo, Alessandro Fiorindi, Karl Schaller, Lucio De Maria
    Brain Sciences 2024 14 3
  • Predicting IDH and ATRX mutations in gliomas from radiomic features with machine learning: a systematic review and meta-analysis
    Chor Yiu Chloe Chung, Laura Elin Pigott
    Frontiers in Radiology 2024 4
  • Enhancing clinical decision-making: An externally validated machine learning model for predicting isocitrate dehydrogenase mutation in gliomas using radiomics from presurgical magnetic resonance imaging
    Jan Lost, Nader Ashraf, Leon Jekel, Marc von Reppert, Niklas Tillmanns, Klara Willms, Sara Merkaj, Gabriel Cassinelli Petersen, Arman Avesta, Divya Ramakrishnan, Antonio Omuro, Ali Nabavizadeh, Spyridon Bakas, Khaled Bousabarah, MingDe Lin, Sanjay Aneja, Michael Sabel, Mariam Aboian
    Neuro-Oncology Advances 2024 6 1
  • Performance of Machine Learning Models in Predicting BRAF Alterations Using Imaging Data in Low-Grade Glioma: A Systematic Review and Meta-Analysis
    Shahryar Rajai Firouzabadi, Roozbeh Tavanaei, Ida Mohammadi, Alireza Alikhani, Ali Ansari, Mohammadhosein Akhlaghpasand, Bardia Hajikarimloo, Raymund L. Yong, Konstantinos Margetis
    World Neurosurgery 2025 195

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire