Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleArtificial Intelligence
Open Access

A Review of the Opportunities and Challenges with Large Language Models in Radiology: The Road Ahead

Neetu Soni, Manish Ora, Amit Agarwal, Tianbao Yang and Girish Bathla
American Journal of Neuroradiology July 2025, 46 (7) 1292-1299; DOI: https://doi.org/10.3174/ajnr.A8589
Neetu Soni
aFrom the Department of Radiology (N.S., A.A.), Mayo Clinic—Jacksonville, Jacksonville, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Neetu Soni
Manish Ora
bDepartment of Nuclear Medicine (M.O.), Sanjay Gandhi Post Graduate Institute of Medical Science, Lucknow, India
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Manish Ora
Amit Agarwal
aFrom the Department of Radiology (N.S., A.A.), Mayo Clinic—Jacksonville, Jacksonville, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Amit Agarwal
Tianbao Yang
cDepartment of Computer Science & Engineering (T.Y.), Texas A&M University, College Station, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Girish Bathla
dDepartment of Radiology (G.B.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Girish Bathla
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Mikolov T,
    2. Sutskever I,
    3. Chen K, et al
    . Distributed representations of words and phrases and their compositionality. Adv Neural Inf Process Syst 2013;26:3111–3119
  2. 2.↵
    1. Vaswani A,
    2. Shazeer N,
    3. Parmar N, et al
    . Attention is all you need. Adv Neural Inf Process Syst 2017;30:6000–10
  3. 3.↵
    1. Devlin J,
    2. Chang M-W,
    3. Lee K, et al
    . BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics; 2019:4171–86
  4. 4.↵
    1. Lewis M,
    2. Liu Y,
    3. Goyal N, et al
    . BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics; 2020:7871–80
  5. 5.↵
    1. Brown T,
    2. Mann B,
    3. Ryder N, et al
    . Language models are few-shot learners. Adv Neural Inf Process Syst 2020;33:1877–1901
  6. 6.↵
    1. Chowdhery A,
    2. Narang S,
    3. Devlin J, et al
    . Palm: Scaling language modeling with pathways. J Mach Learn Res 2023;24:11324–43
  7. 7.↵
    1. Zhao WX,
    2. Zhou K,
    3. Li J, et al
    . A survey of large language models. arXiv preprint arXiv:230318223 2023
  8. 8.↵
    1. Ghosh A,
    2. Acharya A,
    3. Saha S, et al
    . Exploring the frontier of vision-language models: a survey of current methodologies and future directions. arXiv preprint arXiv:240407214 2024
  9. 9.↵
    1. Akinci D’Antonoli T,
    2. Stanzione A,
    3. Bluethgen C, et al
    . Large language models in radiology: fundamentals, applications, ethical considerations, risks, and future directions. Diagn Interv Radiol 2024;30:80–90 doi:10.4274/dir.2023.232417 pmid:37789676
    CrossRefPubMed
  10. 10.↵
    1. Bhayana R,
    2. Krishna S,
    3. Bleakney RR
    . Performance of ChatGPT on a radiology board-style examination: insights into current strengths and limitations. Radiology 2023;307:e230582 doi:10.1148/radiol.230582 pmid:37191485
    CrossRefPubMed
  11. 11.↵
    1. Liu Z,
    2. Zhong A,
    3. Li Y
    . Radiology-GPT: a large language model for radiology. Meta-Radiology Epub ahead of print May 16, 2025
  12. 12.↵
    1. Gallifant J,
    2. Fiske A,
    3. Levites Strekalova YA, et al
    . Peer review of GPT-4 technical report and systems card. PLOS Digital Health 2024;3:e0000417 doi:10.1371/journal.pdig.0000417 pmid:38236824
    CrossRefPubMed
  13. 13.↵
    1. Anil R,
    2. Dai AM,
    3. Firat O, et al
    . Palm 2 technical report. arXiv preprint arXiv:230510403 2023
  14. 14.↵
    1. Touvron H,
    2. Lavril T,
    3. Izacard G, et al
    . LLaMA: open and efficient foundation language models. arXiv preprint arXiv:230213971 2023
  15. 15.↵
    1. Joshi G,
    2. Jain A,
    3. Araveeti SR, et al
    . FDA-approved artificial intelligence and machine learning (AI/ML)-enabled medical devices: an updated landscape. Electronics 2024;13:498 doi:10.3390/electronics13030498
    CrossRef
  16. 16.↵
    1. Banerjee S,
    2. Agarwal A,
    3. Singla S
    . LLMs will always hallucinate, and we need to live with this. arXiv preprint arXiv:240905746 2024
  17. 17.↵
    1. Wiggins WF,
    2. Tejani AS
    . On the opportunities and risks of foundation models for natural language processing in radiology. Radiol Artif Intell 2022;4:e220119 doi:10.1148/ryai.220119 pmid:35923379
    CrossRefPubMed
  18. 18.↵
    1. Paaß G,
    2. Giesselbach S
    . Foundation Models for Natural Language Processing: Pre-Trained Language Models Integrating Media. Springer-Verlag Nature; 2023
  19. 19.↵
    1. Denecke K,
    2. May R,
    3. Rivera Romero O
    . Potential of large language models in health care: Delphi study. J Med Internet Res 2024;26:e52399 doi:10.2196/52399 pmid:38739445
    CrossRefPubMed
  20. 20.↵
    1. Yang X,
    2. Chen A,
    3. PourNejatian N, et al
    . Gatortron: a large clinical language model to unlock patient information from unstructured electronic health records. arXiv preprint arXiv:220303540 2022
  21. 21.↵
    1. Bordes F,
    2. Pang RY,
    3. Ajay A, et al
    . An introduction to vision-language modeling. arXiv preprint arXiv:240517247 2024
  22. 22.↵
    OpenVLM Leaderboard. 2024
  23. 23.↵
    1. Radford A,
    2. Kim JW,
    3. Hallacy C
    , et al. Learning transferable visual models from natural language supervision. Proceedings of the 38th International Conference on Machine Learning. Proc Mach Learn Res 2021;139:8748–63
  24. 24.↵
    1. Rombach R,
    2. Blattmann A,
    3. Lorenz D, et al
    . High-resolution image synthesis with latent diffusion models. Paper presented at: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); June 21–24, 2022; New Orleans, LA
  25. 25.↵
    1. Berger E
    . Grounding LLMs. Eleanor on Everything. Accessed January 6, 2025. https://everything.intellectronica.net/p/grounding-llms
  26. 26.↵
    1. Mukherjee P,
    2. Hou B,
    3. Lanfredi RB, et al
    . Feasibility of using the privacy-preserving large language model Vicuna for labeling radiology reports. Radiology 2023;309:e231147 doi:10.1148/radiol.231147 pmid:37815442
    CrossRefPubMed
  27. 27.↵
    1. Qiu Z-H,
    2. Guo S,
    3. Xu M, et al
    . To cool or not to cool? Temperature network meets large foundation models via DRO. arXiv preprint arXiv:240404575 2024
  28. 28.↵
    1. López-Úbeda P,
    2. Martín-Noguerol T,
    3. Juluru K, et al
    . Natural language processing in radiology: update on clinical applications. J Am Coll Radiol 2022;19:1271–85 doi:10.1016/j.jacr.2022.06.016 pmid:36029890
    CrossRefPubMed
  29. 29.↵
    1. Gertz RJ,
    2. Bunck AC,
    3. Lennartz S, et al
    . GPT-4 for automated determination of radiological study and protocol based on radiology request forms: a feasibility study. Radiology 2023;307:e230877 doi:10.1148/radiol.230877 pmid:37310247
    CrossRefPubMed
  30. 30.↵
    1. Nazario-Johnson L,
    2. Zaki HA,
    3. Tung GA
    . Use of large language models to predict neuroimaging. J Am Coll Radiol 2023;20:1004–09 doi:10.1016/j.jacr.2023.06.008 pmid:37423349
    CrossRefPubMed
  31. 31.↵
    1. Kuckelman IJ,
    2. Paul HY,
    3. Bui M, et al
    . Assessing AI-powered patient education: a case study in radiology. Acad Radiol 2024;31:338–42 doi:10.1016/j.acra.2023.08.020 pmid:37709612
    CrossRefPubMed
  32. 32.↵
    1. Laukamp KR,
    2. Terzis RA,
    3. Werner JM, et al
    . Monitoring patients with glioblastoma by using a large language model: accurate summarization of radiology reports with GPT-4. Radiology 2024;312:e232640 doi:10.1148/radiol.232640 pmid:39041936
    CrossRefPubMed
  33. 33.↵
    1. Antonelli M,
    2. Reinke A,
    3. Bakas S, et al
    . The medical segmentation decathlon. Nat Commun 2022;13:4128 doi:10.1038/s41467-022-30695-9 pmid:35840566
    CrossRefPubMed
  34. 34.↵
    1. Kirillov A,
    2. Mintun E,
    3. Ravi N, et al
    . Segment anything. Proceedings of the IEEE/CVF International Conference on Computer Vision; October 1–6, 2023; Paris, France: 4015–26
  35. 35.↵
    1. Huang Y,
    2. Yang X,
    3. Liu L, et al
    . Segment anything model for medical images? Med Image Anal 2024;92:103061 doi:10.1016/j.media.2023.103061 pmid:38086235
    CrossRefPubMed
  36. 36.↵
    1. Liu Y,
    2. Zhang J,
    3. She Z, et al
    . SAMM (segment any medical model): a 3D slicer integration to SAM. arXiv preprint arXiv:230405622 2023
  37. 37.↵
    1. Ma J,
    2. He Y,
    3. Li F, et al
    . Segment anything in medical images. Nat Comm 2024;15:654 doi:10.1038/s41467-024-44824-z pmid:38253604
    CrossRefPubMed
  38. 38.↵
    1. Ma J,
    2. Wang B
    . Towards foundation models of biological image segmentation. Nat Methods 2023;20:953–55 doi:10.1038/s41592-023-01885-0 pmid:37433999
    CrossRefPubMed
  39. 39.↵
    1. Ravi N,
    2. Gabeur V,
    3. Hu Y-T, et al
    . SAM 2: segment anything in images and videos. arXiv preprint arXiv:240800714 2024
  40. 40.↵
    1. Kiraly A,
    2. Traverse M
    ; Google research. Taking medical imaging embeddings 3D. October 21, 2024. Accessed February 28, 2025. https://research.google/blog/taking-medical-imaging-embeddings-3d/
  41. 41.↵
    1. Sonoda Y,
    2. Kurokawa R,
    3. Nakamura Y, et al
    . Diagnostic performances of GPT-40, Claude 3 Opus, and Gemini 1.5 Pro in “diagnosis please” cases. Jpn J Radiol 2024;42:1231–35 doi:10.1007/s11604-024-01619-y pmid:38954192
    CrossRefPubMed
  42. 42.↵
    1. Wada A,
    2. Akashi T,
    3. Shih G, et al
    . Optimizing GPT-4 turbo diagnostic accuracy in neuroradiology through prompt engineering and confidence thresholds. Diagnostics (Basel) 2024;14:1541 doi:10.3390/diagnostics14141541 pmid:39061677
    CrossRefPubMed
  43. 43.↵
    1. Suh PS,
    2. Shim WH,
    3. Suh CH, et al
    . Comparing diagnostic accuracy of radiologists versus GPT-4V and Gemini Pro Vision using image inputs from diagnosis please cases. Radiology 2024;312:e240273 doi:10.1148/radiol.240273 pmid:38980179
    CrossRefPubMed
  44. 44.↵
    1. Abdullahi T,
    2. Singh R,
    3. Eickhoff C
    . Learning to make rare and complex diagnoses with generative AI assistance: qualitative study of popular large language models. JMIR Med Educ 2024;10:e51391 doi:10.2196/51391 pmid:38349725
    CrossRefPubMed
  45. 45.↵
    1. Liu C,
    2. Wan Z,
    3. Wang Y, et al
    . Benchmarking and boosting radiology report generation for 3D high-resolution medical images. arXiv preprint arXiv:240607146 2024
  46. 46.↵
    1. Wang Z,
    2. Liu L,
    3. Wang L, et al
    . R2GenGPT: radiology report generation with frozen LLMs. Meta-Radiology 2023;1:100033 doi:10.1016/j.metrad.2023.100033
    CrossRef
  47. 47.↵
    1. Pinto Dos Santos D,
    2. Cuocolo R,
    3. Huisman M
    . O structured reporting, where art thou? Eur Radiol 2024;34:4193–94 doi:10.1007/s00330-023-10465-x pmid:38010379
    CrossRefPubMed
  48. 48.↵
    1. Hartung MP,
    2. Bickle IC,
    3. Gaillard F, et al
    . How to create a great radiology report. Radiographics 2020;40:1658–70 doi:10.1148/rg.2020200020 pmid:33001790
    CrossRefPubMed
  49. 49.↵
    1. Adams LC,
    2. Truhn D,
    3. Busch F, et al
    . Leveraging GPT-4 for post hoc transformation of free-text radiology reports into structured reporting: a multilingual feasibility study. Radiology 2023;307:e230725 doi:10.1148/radiol.230725 pmid:37014240
    CrossRefPubMed
  50. 50.↵
    1. Hasani AM,
    2. Singh S,
    3. Zahergivar A, et al
    . Evaluating the performance of Generative Pre-trained Transformer-4 (GPT-4) in standardizing radiology reports. Eur Radiol 2024;34:3566–74 doi:10.1007/s00330-023-10384-x pmid:37938381
    CrossRefPubMed
  51. 51.↵
    1. Gertz RJ,
    2. Dratsch T,
    3. Bunck AC, et al
    . Potential of GPT-4 for detecting errors in radiology reports: implications for reporting accuracy. Radiology 2024;311:e232714 doi:10.1148/radiol.232714 pmid:38625012
    CrossRefPubMed
  52. 52.↵
    1. Matsuo H,
    2. Nishio M,
    3. Matsunaga T, et al
    . Exploring multilingual large language models for enhanced TNM classification of radiology report in lung cancer staging. arXiv preprint arXiv:240606591 2024
  53. 53.↵
    1. Yan A,
    2. McAuley J,
    3. Lu X, et al
    . RadBERT: adapting transformer-based language models to radiology. Radiol Artif Intell 2022;4:e210258
    CrossRefPubMed
  54. 54.↵
    1. Doshi R,
    2. Amin KS,
    3. Khosla P, et al
    . Quantitative evaluation of large language models to streamline radiology report impressions: a multimodal retrospective analysis. Radiology 2024;310:e231593 doi:10.1148/radiol.231593 pmid:38530171
    CrossRefPubMed
  55. 55.↵
    1. Park J,
    2. Oh K,
    3. Han K, et al
    . Patient-centered radiology reports with generative artificial intelligence: adding value to radiology reporting. Sci Rep 2024;14:13218 doi:10.1038/s41598-024-63824-z pmid:38851825
    CrossRefPubMed
  56. 56.↵
    1. Berigan K,
    2. Short R,
    3. Reisman D, et al
    . The impact of large language model-generated radiology report summaries on patient comprehension: a randomized controlled trial. J Am Coll Radiol 2024;21:1898–903 doi:10.1016/j.jacr.2024.06.018 pmid:38964446
    CrossRefPubMed
  57. 57.↵
    1. Li C,
    2. Wong C,
    3. Zhang S, et al
    . LLaVA-Med: training a large language-and-vision assistant for biomedicine in one day. In: Proceedings of the 37th International Conference on Neural Information Processing Systems (NIPS ’23). Curran Associates Inc; 2023;1240:28541–64
  58. 58.↵
    1. Moor M,
    2. Huang Q,
    3. Wu S, et al
    . Med-flamingo: a multimodal medical few-shot learner. Proceedings of the 3rd Machine Learning for Health (ML4H). Proc Mach Learn Res 2023;225:353–67
  59. 59.↵
    1. Haemmerli J,
    2. Sveikata L,
    3. Nouri A, et al
    . ChatGPT in glioma adjuvant therapy decision making: ready to assume the role of a doctor in the tumour board? BMJ Health Care Inform 2023;30:e100775 doi:10.1136/bmjhci-2023-100775 pmid:37399360
    Abstract/FREE Full Text
  60. 60.↵
    1. Tippareddy C,
    2. Jiang S,
    3. Bera K, et al
    . Radiology reading room for the future: harnessing the power of large language models like ChatGPT. Curr Probl Diagn Radiol 2023 August 30. [Epub ahead of print] doi:10.1067/j.cpradiol.2023.08.018 pmid:37758604
    CrossRefPubMed
  61. 61.↵
    1. Liang W,
    2. Zhang Y,
    3. Cao H, et al
    . Can large language models provide useful feedback on research papers? A large-scale empirical analysis. N Eng J Med AI 2024;1:AIoa2400196 doi:10.1056/AIoa2400196
    CrossRef
  62. 62.↵
    1. Hwang SI,
    2. Lim JS,
    3. Lee RW, et al
    . Is ChatGPT a “fire of Prometheus” for non-native English-speaking researchers in academic writing? Korean J Radiol 2023;24:952–59 doi:10.3348/kjr.2023.0773 pmid:37793668
    CrossRefPubMed
  63. 63.↵
    Scispace. Scispace. The Fastest Research Platform Ever
  64. 64.↵
    1. Ullah E,
    2. Parwani A,
    3. Baig MM, et al
    . Challenges and barriers of using large language models (LLM) such as ChatGPT for diagnostic medicine with a focus on digital pathology–a recent scoping review. Diagn Pathol 2024;19:43–49 doi:10.1186/s13000-024-01464-7 pmid:38414074
    CrossRefPubMed
  65. 65.↵
    1. Hu M,
    2. Qian J,
    3. Pan S, et al
    . Advancing medical imaging with language models: featuring a spotlight on ChatGPT. Phys Med Biol 2024;69:10TR01 doi:10.1088/1361-6560/ad387d
    CrossRef
  66. 66.↵
    1. Mirzadeh I,
    2. Alizadeh K,
    3. Shahrokhi H, et al
    . GSM-symbolic: understanding the limitations of mathematical reasoning in large language models. arXiv preprint arXiv:241005229 2024
  67. 67.↵
    1. Bhayana R
    . Chatbots and large language models in radiology: a practical primer for clinical and research applications. Radiology 2024;310:e232756 doi:10.1148/radiol.232756 pmid:38226883
    CrossRefPubMed
  68. 68.↵
    1. Bender EM,
    2. Gebru T,
    3. McMillan-Major A, et al
    . On the dangers of stochastic parrots: Can language models be too big? Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency; 2021:610–23
  69. 69.↵
    1. Obermeyer Z,
    2. Powers B,
    3. Vogeli C, et al
    . Dissecting racial bias in an algorithm used to manage the health of populations. Science 2019;366:447–53 doi:10.1126/science.aax2342 pmid:31649194
    Abstract/FREE Full Text
  70. 70.↵
    1. Ong JCL,
    2. Chang SY-H,
    3. William W, et al
    . Medical ethics of large language models in medicine. NEJM AI 2024;1:AIra2400038 doi:10.1056/AIra2400038
    CrossRef
  71. 71.↵
    1. Li H,
    2. Moon JT,
    3. Purkayastha S, et al
    . Ethics of large language models in medicine and medical research. Lancet Digit Health 2023;5:e333–35 doi:10.1016/S2589-7500(23)00083-3 pmid:37120418
    CrossRefPubMed
  72. 72.↵
    1. Mannarswamy S,
    2. Chidambaram S
    . Opening the NLP Blackbox–analysis and evaluation of NLP models: methods, challenges and opportunities. Proceedings of the 3rd ACM India Joint International Conference on Data Science & Management of Data (8th ACM IKDD CODS & 26th COMAD); 2021:447–448
  73. 73.↵
    1. Ajwani R,
    2. Javaji SR,
    3. Rudzicz F, et al
    . LLM-generated black-box explanations can be adversarially helpful. arXiv preprint arXiv:240506800 2024
  74. 74.↵
    1. Eaton P,
    2. Ince B,
    3. Iskovs A
    . The limitations of LLMs, or why are we doing RAG? Accessed May 21, 2025. https://www.enterprisedb.com/blog/limitations-llm-or-why-are-we-doing-rag
  75. 75.↵
    1. Qiu S,
    2. Liu Q,
    3. Zhou S, et al
    . Review of artificial intelligence adversarial attack and defense technologies. App Sci (Basel) 2019;9:909 doi:10.3390/app9050909
    CrossRef
  76. 76.↵
    1. Zhang S,
    2. Metaxas D
    . On the challenges and perspectives of foundation models for medical image analysis. Med Image Anal 2024;91:102996 doi:10.1016/j.media.2023.102996 pmid:37857067
    CrossRefPubMed
  77. 77.↵
    1. Chen L,
    2. Zaharia M,
    3. Zou J
    . How is ChatGPT’s behavior changing over time? arXiv preprint arXiv:230709009 2023
  78. 78.↵
    1. Delile J,
    2. Mukherjee S,
    3. Van Pamel A, et al
    . Graph-based retriever captures the long tail of biomedical knowledge. arXiv preprint arXiv:240212352 2024
  79. 79.↵
    1. Stokel-Walker C
    . ChatGPT listed as author on research papers: many scientists disapprove. Nature 2023;613:620–21 doi:10.1038/d41586-023-00107-z pmid:36653617
    CrossRefPubMed
  80. 80.↵
    1. Moy L
    . Guidelines for use of large language models by authors, reviewers, and editors: considerations for imaging journals. Radiology 2023;309:e239024 doi:10.1148/radiol.239024 pmid:37815449
    CrossRefPubMed
  81. 81.↵
    1. Warraich HJ,
    2. Tazbaz T,
    3. Califf RM
    . FDA perspective on the regulation of artificial intelligence in health care and biomedicine. J Am Med Assoc 2024;333:241–47 doi:10.1001/jama.2024.21451 pmid:39405330
    CrossRefPubMed
  82. 82.↵
    1. Wang G,
    2. Zhang S,
    3. Huang X, et al
    . Editorial for special issue on explainable and generalizable deep learning methods for medical image computing. Med Image Anal 2022;84:102727 doi:10.1016/j.media.2022.102727 pmid:36525844
    CrossRefPubMed
  83. 83.↵
    1. Kim W
    . Seeing the unseen: advancing generative AI research in radiology. Radiology 2024;311:e240935 doi:10.1148/radiol.240935 pmid:38771182
    CrossRefPubMed
  84. 84.↵
    1. Marks M,
    2. Haupt CE
    . AI chatbots, health privacy, and challenges to HIPAA compliance. J Am Med Assoc 2023;330:309–10 doi:10.1001/jama.2023.9458 pmid:37410450
    CrossRefPubMed
  85. 85.↵
    1. Akinci D’Antonoli T,
    2. Bluethgen C
    . A new era of text mining in radiology with privacy-preserving LLMs. Radiol Artif Intell 2024;6:e240261 doi:10.1148/ryai.240261
    CrossRefPubMed
  86. 86.↵
    1. Esmradi A,
    2. Yip DW,
    3. Chan CF
    . A comprehensive survey of attack techniques, implementation, and mitigation strategies in large language models. International Conference on Ubiquitous Security: Springer-Verlag; 2023:76–95
  87. 87.↵
    1. Surla A,
    2. Bodhankar A,
    3. Varshney T
    . Generative AI: an easy introduction to multimodal retrieval-augmented generation. March 20, 2024. Accessed February 28, 2025. https://developer.nvidia.com/blog/an-easy-introduction-to-multimodal-retrieval-augmented-generation/
  88. 88.↵
    1. Arasteh ST,
    2. Lotfinia M,
    3. Bressem K, et al
    . RadioRAG: factual large language models for enhanced diagnostics in radiology using dynamic retrieval augmented generation. arXiv preprint arXiv:240715621 2024
  89. 89.↵
    Open AI. Introducing OpenAI o1-preview. A new series of reasoning models for solving hard problems. September 12, 2024. Updated September 24, 2024. Accessed February 24, 2025. https://openai.com/index/introducing-openai-o1-preview/
  90. 90.↵
    1. Xexéo G,
    2. Braida F,
    3. Parreiras M, et al
    . The economic implications of large language model selection on earnings and return on investment: a decision theoretic model. arXiv preprint arXiv:240517637 2024
  91. 91.↵
    1. Jabal MS,
    2. Warman P,
    3. Zhang J, et al
    . Language models and retrieval augmented generation for automated structured data extraction from diagnostic reports. arXiv preprint arXiv:240910576 2024
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 46 (7)
American Journal of Neuroradiology
Vol. 46, Issue 7
1 Jul 2025
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Review of the Opportunities and Challenges with Large Language Models in Radiology: The Road Ahead
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Neetu Soni, Manish Ora, Amit Agarwal, Tianbao Yang, Girish Bathla
A Review of the Opportunities and Challenges with Large Language Models in Radiology: The Road Ahead
American Journal of Neuroradiology Jul 2025, 46 (7) 1292-1299; DOI: 10.3174/ajnr.A8589

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Large Language Models in Radiology
Neetu Soni, Manish Ora, Amit Agarwal, Tianbao Yang, Girish Bathla
American Journal of Neuroradiology Jul 2025, 46 (7) 1292-1299; DOI: 10.3174/ajnr.A8589
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Models, Modals, and Miscellaneous Things in between!
    • Potential Applications of LLMs in Radiology
    • LLM Limitations and Drawbacks
    • Future Directions
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (2)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Large Language Models in Healthcare and Medical Applications: A Review
    Subhankar Maity, Manob Jyoti Saikia
    Bioengineering 2025 12 6
  • Comparative Evaluation of Large Language and Multimodal Models in Detecting Spinal Stabilization Systems on X-Ray Images
    Bartosz Polis, Agnieszka Zawadzka-Fabijan, Robert Fabijan, Róża Kosińska, Emilia Nowosławska, Artur Fabijan
    Journal of Clinical Medicine 2025 14 10

More in this TOC Section

  • Improving Hematoma Expansion Prediction Robustness
  • MRI-Based Models for Diagnosis of Brain Lesions
Show more ARTIFICIAL INTELLIGENCE

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire