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Language Models in Radiology: The Road Ahead

Neetu Soni, Manish Ora, Amit Agarwal, Tianbao Yang, and Girish Bathla

ABSTRACT

SUMMARY: In recent years, generative artificial intelligence (AI), particularly large language models (LLMs) and their multimodal
counterparts, multimodal large language models, including vision language models, have generated considerable interest in the global AI
discourse. LLMs, or pre-trained language models (such as ChatGPT, Med-PaLM, LLaMA), are neural network architectures trained on
extensive text data, excelling in language comprehension and generation. Multimodal LLMs, a subset of foundation models, are trained
on multimodal data sets, integrating text with another modality, such as images, to learn universal representations akin to human cog-
nition better. This versatility enables them to excel in tasks like chatbots, translation, and creative writing while facilitating knowledge
sharing through transfer learning, federated learning, and synthetic data creation. Several of these models can have potentially appeal-
ing applications in the medical domain, including, but not limited to, enhancing patient care by processing patient data; summarizing
reports and relevant literature; providing diagnostic, treatment, and follow-up recommendations; and ancillary tasks like coding and bill-
ing. As radiologists enter this promising but uncharted territory, it is imperative for them to be familiar with the basic terminology and
processes of LLMs. Herein, we present an overview of the LLMs and their potential applications and challenges in the imaging domain.

ABBREVIATIONS: AI ¼ artificial intelligence; BERT ¼ bidirectional encoder representations from transformers; CLIP ¼ contrastive language-image pre-training;
FM ¼ foundation models; GPT ¼ generative pre-trained transformer; LLM ¼ large language model; NLP ¼ natural language processing; PLM ¼ pre-trained
language model; RAG ¼ retrieval augmented generation; SAM ¼ segment anything model; VLM ¼ vision language model

The origin of language models dates from the 1990s with sta-
tistical language models focused on word prediction using

n-grams and hidden Markov models. In 2013, neural language
models like Word2Vec shifted the focus to distributed word
embeddings using shallow neural networks.1 The field, however,
underwent a paradigm shift with the introduction of transformer
architecture in 2017, based entirely on attention mechanism.2

This was quickly followed by the introduction of pre-trained lan-
guage models (PLMs), represented by bidirectional encoder rep-
resentations from transformers (BERT) (2018) and Bidirectional
and Auto-Regressive Transformers (BART) (2019), which
marked a major leap by utilizing transformers and context-aware
word representations, greatly improving natural language proc-
essing (NLP) task performance.3,4 More recently, it was found

that scaling PLM (in terms of model or data size), exemplified by
generative pre-trained transformer (GPT)-3 (2020) and Pathway
Language Models (PaLM) (2022), often leads to not only improved
performance on downstream tasks but also some emergent abilities
(eg, in-context learning and step-by-step reasoning) in solving a se-
ries of complex tasks. To differentiate these language models, the
research community introduced the term “large language models”
(LLMs) for the PLMs with massive size (eg, containing billions of
parameters).5-7

LLMs have rapidly evolved since their introduction. These
generative artificial intelligence (AI) models (including LLM,
vision language models [VLMs], and diffusion-based models)
can generate content in various domains, including language
(GPT-4, PaLM, Claude), image (Midjourney, Stable Diffusion),
codes (Copilot), and audio (VALL-E, resemble.ai).8-10 Unlike tra-
ditional NLP models that process words sequentially, trans-
former-based models use attention layers to capture long-term
dependencies. LLMs are trained on vast data and can produce
human-like responses.11 Publicly accessible ChatGPT was ini-
tially launched in 2022 by OpenAI12, followed by other LLMs
such as Gemini, MedPaLM (Google), LLaVa-Med (Microsoft),
Llama (Meta), and Claude 3 (Anthropic). These vary in the train-
ing parameters and purposes. While ChatGPT is a general-purpose
LLM, MedPaLM and LLaVa-Med, for example, are tailored for
medical applications. These models hold promise for enhancing
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radiology workflows by accelerating information retrieval, gener-
ating comprehensive reports, and potentially aiding in diagnostic
decision-making.12-14 Given that radiology is often at the leading
edge of technology and is associated with more than 70% of
FDA-approved AI-enabled tools in the medical domain, it is
unlikely that radiologists will remain untouched by this disrup-
tive technology.15

Despite all the excitement around them, current LLMs are still
in their infancy. Even though LLMs can mimic human conversa-
tions, they rely on word associations rather than true comprehen-
sion, limiting their problem-solving and logical reasoning abilities.
LLMsmay hallucinate or fabricate facts.16 The successful integration
of LLMs in radiology demands addressing critical challenges. They
need vast training data sets and can give inconsistent responses
because of their probabilistic nature. Addressing these challenges is
paramount to fully realizing the potential of LLMs in radiology,
which can be truly transformative. Herein, we briefly review the
evolution of LLMs and their potential applications in radiology,
including limitations, challenges, and possible solutions.

Prior to proceeding further, the interested reader is referred
to the Supplemental Data for a glossary of common LLM-
related terminology.

MODELS, MODALS, AND MISCELLANEOUS THINGS
IN BETWEEN!
A foundation model (FM) is an AI model trained using self-
supervised learning with large unannotated data sets.17 This con-
fers broad capabilities to the model, enabling it to serve as a base
(or foundation) for subsequent models. FMs trained on text,
code, and images can be quite versatile. For example, the original
ChatGPT (an LLM) was built on GPT 3.5 (a foundation model)
and tweaked with chat-specific data.

LLMs are a subset of FMs that specialize in language tasks.18

This is done by converting text into “tokens,” which are the fun-
damental units of input and output data. Tokenization is essential
to understanding syntax, semantics, and relationships within the
text, affecting eventual model performance and the ability to pre-
dict subsequent tokens.19,20 Parameters, on the other hand, are

trainable weights and biases within the
model, which are learned from the
training data and can be considered the
building blocks of the model. Figure 1
shows the number of training models
and parameters of some of the common
LLMs.

Even though LLMs work well for
understanding and generating text,
these are essentially unimodal, which
limits their generalizability. However,
integrating image identification/classifi-
cation is challenging since most deep
learning-based computer vision sys-
tems are data intensive and broadly not
generalizable. While language is discrete
and can be tokenized, visual concepts
can evolve into higher dimensional
spaces and can be difficult to discretize.21

Naively discretizing images on a pixel-by-pixel basis may lose local
neighborhood information and may lead to prohibitive computing
costs. For example, if the resolution of a color image is
256*256*3, the length of pixel tokens is 196,608. The use of self-
attention size (a technique that identifies and weighs the various
parts of an input sequence) can scale as a quadratic function of
the token length and be computationally prohibitive. This
prompted the development of VLMs, which can be broadly
defined as multi-modal models capable of performing inference
with both images and text. The input may be image or text,
while the output can be text, bounding box, or even segmenta-
tion masks. As of this writing, there are more than 112 publicly
available open-source or application programming interface
VLMs, including GPT-4v, Gemini, LLaVA, and others.22 In gen-
eral, VLMs are trained using four main strategies, either alone or
in combination. In contrastive training, pairs of positive and neg-
ative examples are used, with the model trained to predict similar
representations for the positive pairs. A typical example of this is
contrastive learning image pre-training (CLIP), a neural network
introduced in 2021.23 CLIP combines a text and an image
encoder and leverages information from two modalities to pre-
dict which caption goes with which image. The CLIP model has
since been used for tasks such as generating images from text
(Dalle-3, Midjourney), image segmentation tasks (Segment any-
thing model [SAM]), and tasks involving image captioning and
search. Note that CLIP is essentially adept at visual classification
tasks. When provided with an image-text pair, it can determine if
the two are a good fit for each other. However, it may not work
well when differentiating categories with significant overlap.21

The second training strategy for VLMs is masking, where the
VLM is trained to reconstruct missing patches in text (given an
unmasked image) or vice-versa. The generative training para-
digm, on the other hand, is used for models capable of generat-
ing entire images or very long captions, although some models
may be trained to only generate images from text (eg, stable dif-
fusion).24 These models are generally more expensive to train.
Finally, models using pre-trained backbones leverage open-
source LLMs to learn the mapping between the image encoder

FIG 1. Bar chart showing the training tokens and parameters (in billions) of some of the common
LLMs. Please note that several models are essentially part of larger families of models, and individual
models may have variability in training tokens and parameters (data source: https://lifearchitect.ai/).
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and LLM (eg, Frozen, MiniGPT).21 VLMs may also be further
subcategorized into models designed specifically for image
interpretation and comprehension in conjunction with language
(eg, CLIP), models that generate text from multimodal input
(eg, GPT-4V), or models that can have both multimodal input
and output (eg, Google Gemini). For a more detailed descrip-
tion of VLM, the interested reader is referred to the recent work
by Ghosh et al.8

LLMs may perform the designated task after exposure to a
few examples (few-shot learning), single examples (single-shot
learning), or even without any training examples (zero-shot
learning).5 Another commonly used term in the field is “ground-
ing,” which, in the context of LLMs, essentially implies providing
the LLM with relevant and use case-specific information in order
to obtain more accurate and relevant output. This is primarily
done through retrieval augmented generation (RAG), which
retrieves information (through databases, files, etc) and presents
it to the LLM, along with the prompt. The LLM then uses this
information while responding to the query.25

LLM models may be open-source or proprietary. Open-
source LLMs, such as LLaMA series of models, have gained con-
siderable popularity and attention in both academia and indus-
try as a result of the available model checkpoints to customize,
transparent model architecture, training process, data sets, and
code. In contrast, closed-source LLMs, such as the ChatGPT
family, only offer an application programming interface for
users to access the LLMs instead of directly using the model. In
particular, closed source options may also provide interfaces for
users to further fine-tune released models on the host server. In
evaluation, although closed-source models often tend to be
more powerful because of their access to vast proprietary train-
ing data sets and advanced research resources, open-source
models are still competitive with top-tier closed-source models.

LLMs, by nature, are probabilistic models, and the response
can vary, even to the same query. This, in technical terms, is
determined by the “temperature,” which can be adjusted based
on the requirements. Models with a higher temperature give a
more varied response, which can be entertaining but not ideal in
the medical domain. Models with a temperature of zero are
deterministic and always give essentially the same response to
the same query.26 Some authors have recently proposed using a
context-aware temperature network, which can variably drive
the temperature up or down, based on the context, eg, TempNet.27

A summary of various LLMs used in the healthcare space is pro-
vided in Supplementary Data.

POTENTIAL APPLICATIONS OF LLMS IN RADIOLOGY
LLMs have the potential to impact several facets of radiology,
starting from study ordering and protocoling all the way to report
generation and follow up. These can impact not only the radiol-
ogist but also the patient, primary healthcare providers, and the
healthcare system. In the following sections, we briefly outline
some of the potential LLM applications and associated challenges.

Workflow Optimization
LLMs, given their ability to comprehend vast textual information
(diagnostic requests, electronic health records, prior imaging
reports, guidelines, and medical literature)9,28 can help with

study protocolling in routine and challenging cases.29 Although
tools like ChatGPT and Glass AI have shown promising results
in this regard, a study by Nazario-Johnson et al,30 noted that
their accuracy currently lags behind that of experienced
neuroradiologists.

Chatbots based on LLMs may also be used to provide educa-
tion about CT/MRI procedures in common terms, thereby reduc-
ing patient anxiety while improving patient understanding and
engagement.31 Even though LLM responses are generally accu-
rate, they are currently not perfect and require oversight. Also,
GPT-4 has been utilized to create summaries and graphical repre-
sentations of disease courses from the previous MRI reports in
patients with glioblastoma, which can potentially save time when
comparing multiple prior studies.32

Image Segmentation
FMs can be helpful in reducing the burden associated with
manual segmentations, which are labor-intensive and require
significant expertise. Unlike deep learning-based semi- or fully
automatic segmentation methods, which can have limited gen-
eralizability, foundation segmentation models are more broadly
generalizable.33 SAM, a segmentation model with zero-shot gen-
eralization, generates masks for objects in natural images with
distinct boundaries.34,35 Combining SAM with localization algo-
rithms or integrating it with image processing tools like 3D
Slicer enhances its medical imaging applications.36 MedSAM
is trained on over 1 million medical image-mask pairs from
10 imaging modalities and more than 30 cancer types.
MedSAM demonstrates accurate segmentation, achieving
results comparable with or better than models like U-Net and
DeepLabV31.37 It could be used for 3D tumor annotation
and assessing treatment responses.38 A more recent update,
SAM2 is capable of not only segmenting 2Dimages, but also
3D-data sets and videos.39 A more recent addition to the list
of segmentation models is CT Foundation, a CT-based model
developed for 3D segmentation across different body parts.
The model was launched recently by Google and was trained
using over a half-million de-identified CT volumes.40 These
models could serve as a one-stop shop in the future for radi-
ology-specific tasks instead of having multiple separate seg-
mentation models for individual pathologies (such as glioma,
meningioma, and vestibular schwannoma).

Image Interpretation and Report Generation
Some prior studies have noted a superior diagnostic performance
of Claude 3 Opus over GPT-4o and Gemini 1.5 Pro in “Diagnosis
Please” radiology cases.41 Similarly, GPT-4 Turbo was used to
analyze 751 neuroradiology cases from the American Journal of
Neuroradiology with an initial diagnostic accuracy of 55.1%,
which improved to 72.9% with customized prompt engineering.42

Another recent study compared ChatGPT-4V and Gemini Pro
Vision with radiologists and noted 49%, 39%, and 61% accuracy
across 190 radiology cases, respectively.43 Finally, models like
Bard, ChatGPT-3.5, and GPT-4 have outperformed human con-
sensus and MedAlpaca by at least 5% and 13%, respectively, for
rare and complex diagnoses, with GPT-4 achieving a diagnostic
accuracy of 93%.44 However, an important caveat here is that all
these studies used either history and/or curated limited images
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per case, as is often the case with online educational content.
Unless the radiologist hand-picks individual images for the
model to evaluate, along with prompt engineering, the large-
scale automated generalization capability of these models is
unclear. Similarly, Liu et al45 recently proposed a novel frame-
work for generating radiology reports from high-resolution 3D
CT chest data sets without image down-sampling, again show-
ing the potential application of VLMs in 3D-data sets. More
simplified LLMs for image interpretation and report generation
have also been proposed for 2D images such as chest radio-
graphs.45,46 None of these 2D and 3D models, however, have
been extensively evaluated prospectively to ensure fairness, lack
of bias, or ability to detect rare diseases, which are important
considerations for future validations.

Radiology reports are often written in a freestyle format,
which may hinder the extraction of meaningful information for
clinical or research purposes.47 LLMs have also been deployed to
generate radiology reports by structuring sections such as find-
ings, impressions, and differential diagnoses while integrating
demographic data and keywords.48 In a recent study, GPT-4
showed excellent accuracy in selecting the most appropriate
report template and identifying critical findings.49 Another study
noted AI-structured reports to be comparable to those generated
by radiologists, often outperforming the latter in clarity, brevity,
and ease of understanding.50

Another retrospective study compared the detection of com-
mon reporting errors (eg, omission, insertion, spelling mistakes)
by testing a curated data set of erroneous reports. GPT-4 demon-
strated a detection rate similar to senior radiologists, attending
physicians, and residents (detection rate, 82.7%, 89.3%, 80.0%,
and 80.0%, respectively), albeit with reduced time and cost.51

LLMs have also shown promise in automated TNM classification
in lung cancer staging based solely on radiology reports without
additional training, especially when provided with TNM defini-
tions.52 Finally, LLMs have also shown promise in terms of coding
radiology reports and suggesting follow-up based on the presence
or absence of pathologies (eg, aortic aneurysm) or employing cod-
ing systems (such as Lung-RADS) to screening CT studies.53

Patient-Oriented Reports
LLMs have been shown to simplify radiology report impressions,
making them more comprehensible to patients.54 For example, a
study comparing LLM-generated MRI spine reports with original
reports found that the former had higher comprehension scores
among both radiologists and non-physician raters.55 However,
these AI-generated reports still require edits and expert supervi-
sion, often to remove irrelevant suggestions of causality, prognosis,
or treatment.56 Models using patient-friendly language with illus-
trations of hyperlinked terms perform even better in terms of
patient comprehension.55,56 Similarly, some of the recently released
LLMs (Med-Flamingo, LLaVA-Med) have shown promising
results in visual question answering and rationale generation,
which can augment responses to patient queries about reports,
implications, and follow-up.57,58

Clinical/Tumor Board Decision-Making in the Future
The role of ChatGPT has also been explored for glioma adjuvant
therapy decisions in tumor boards. A small case study (n ¼ 10)

noted that the LLM-provided recommendations were rated mod-
erate to good by the experts, even though the model performed
poorly in classifying glioma types and lacked sufficient precision
to replace expert opinion.59

Radiology Training and Research
LLMs can potentially help simplify complex scientific schematics,
compare radiological images, and reduce repetitive tasks and
activities that may help in radiology education.60 Another study
noted that LLMs like Vicuna-13B can identify various findings
on chest radiography reports and show moderate to substantial
agreement with existing labelers across data sets like MIMIC-
CXR and NIH.26 The LLMs can, therefore, help curate larger
data sets while reducing human efforts.

LLMs have also been explored for reviewing manuscripts. The
peer review feedback for GPT-4 has shown a considerable overlap
(31%) with human reviewers (comparable to overlap between dif-
ferent human reviewers), with users rating it as more beneficial
than human feedback.61 LLMs have also been explored for text
summarization and editing, especially for non-native authors.62

Use of LLMs for manuscript writing is a big ethical concern and
can be a threat not only to the credibility of the paper but also to
the authors and the journal itself. Most journals currently do
not allow the LLM to be designated as a co-author and ask for
transparency from the authors in terms of declaring any use of
the LLM in manuscript preparation. Note that LLMs are not
databases and are designed to be used as a general reasoning
and text engine. They are also well-known to hallucinate refer-
ences. Some of these problems may be partially overcome with
LLMs trained specifically for academic pursuits (eg, Scispace),
which can allow the user to interact with pre-selected papers to
understand complex research better, extract relevant informa-
tion, and identify gaps in existing knowledge.63 When used in
an ethical way, these resources can potentially enhance the
impact of a researcher’s work. Such ethical use is not always a
given, and these developments present a more challenging land-
scape to journals and editors.

LLM LIMITATIONS AND DRAWBACKS
Despite the impressive performance of LLMs, there are several
limitations and potential risks. A Delphi study highlighted con-
cerns among researchers regarding cybersecurity breaches, misinfor-
mation, ethical dilemmas, biased decision-making, and inaccurate
communication.19 LLMs generate responses based on statistical
pattern recognition, lacking a deep contextual understanding of
medical concepts, which can result in errors.64,65 They often fail
at common sense reasoning, leading to incorrect or biased out-
puts. A recent work noted that LLMs can be rather fragile in
mathematic reasoning and argued that the current LLMs may
not be capable of genuine mathematical reasoning.66 LLMs may
produce plausible yet incorrect information “hallucinations” in
diagnostics and report generation.67,68

Biases can also arise from failure to capture the complexity
of real-world clinical scenarios. This can lead to significant inac-
curacies, especially for rare diseases, under-represented groups,
third-world populations, and non-English literature. LLMs may per-
petuate biases from their training data, leading to misinterpretations
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and inappropriate treatment recommendations.69 Privacy concerns
exist as LLMs are trained on large data sets that may include sensi-
tive patient information. The risk of disclosing such information
without consent is considerable.70,71

LLMs can generate convincing but misleading explanations
for incorrect answers, known as “adversarial helpfulness.” This
can deceive humans and other LLMs by reframing questions,
showing overconfidence, and presenting selective evidence.
This highlights the need for caution because of the opaque na-
ture of LLMs, which complicates transparency and under-
standing of their decision-making processes.2,64,72,73 LLMs
may struggle to maintain context over long passages, leading to dis-
jointed responses, and they might not be up-to-date with proprie-
tary information or recent advancements.74 LLMs are also
vulnerable to adversarial attacks, where malicious inputs deceive
the model into producing harmful outputs and reveal confiden-
tial information.75

In terms of more specific limitations pertaining to the medical
domain, it is unlikely that a single foundational model can serve
as a go-to resource given the number of known and continuous
newly defined entities, various imaging modalities, and their own
inherent resolutions, utilities, and limitations.76 It is also unclear
whether a domain-specific LLM versus a modality-specific LLM
might be a better long-term solution. Another issue is the lack
of high-quality annotations in the medical domain, especially
3D data sets, which limits the amount of available training data.
Similarly, the inherent imbalance in the real-world data cannot
be ignored. Rare diseases are, by definition, under-represented.
Lack of sufficient training data can lead to performance degra-
dation later. Given the dynamic nature of the medical domain,
it is inevitable that such models would require continuous
retraining and validation. However, occasionally, models may
lose previously acquired capabilities while acquiring new ones,
as happened with GPT-4 (March 2023), which could differenti-
ate between prime and composite numbers with reasonable ac-
curacy but showed poor performance on the same questions
subsequently (GPT-4, June 2023).77 Finally, even though RAG
has been shown to alleviate some of the shortcomings of LLMs
by grounding and providing context-specific information, the
relative prevalence of redundant pieces of information may sup-
press more recent sparse yet critical information and lead to
incorrect responses.78 A hypothetical example would be a recent
change in tumor classification or treatment strategy for a certain
disease(s). Given the recent change, the information may not be
prevalent in the literature and thus be ignored by RAG and LLM
while formulating a response. In research, LLMs face limitations
due to hallucinations, data bias, misinformation, and a lack of
transparency. The training data often lag recent advancements,
leading to outdated insights. Also, the resource costs and environ-
mental impact of running LLMs are non-trivial. Over-reliance on
these models may erode researchers’ critical thinking and prob-
lem-solving skills. Ethical concerns also arise regarding privacy,
copyright, and plagiarism, as LLMs cannot be held accountable
or listed as authors.79 Consequently, journal guidelines now of-
ten require the disclosure of LLM use in manuscript preparation
to ensure transparency and maintain the integrity of the review
process.80

FUTURE DIRECTIONS
The US Food and Drug Administration (FDA) has authorized
about 1000 AI-enabled medical devices but has yet to authorize
an LLM despite acknowledging their potential to positively
impact healthcare. Given the complexity of LLMs and the possi-
ble output permutations, the FDA recognizes the need for regula-
tory innovation and specialized tools that allow LLM evaluation
in the appropriate context and settings.81 As noted with the vari-
ous aspects of radiology, the LLM performance currently has
considerable challenges in terms of addressing model reliability,
explainability, accountability, consistently matching expert-level
performance, and withstanding rigorous scrutiny. Even though
the news of an LLM outperforming an expert on a test may be
eye-catching, radiologists impact several facets of patient care
simultaneously in a very dynamic field, and the role of trained
medical professionals cannot be taken lightly.

Improving the explainability and generalizability of LLMs is
essential for building human trust, given the current limita-
tions.82 Active involvement of domain experts in data selection
and model fine-tuning ensures that LLM-generated insights are
reviewed and validated before application in patient care, thereby
improving accuracy and reducing errors.64 Model training should
also address the real-life challenges of imbalanced data and rare
diseases, which may considerably impact eventual model per-
formance. This may be done by privacy-compliant data sharing
to mitigate real-world data scarcity, limiting the use of synthetic
or augmented data (especially for rare cases), and ensuring over-
all high-quality ground-truth data. It is important to note here
that over-reliance on synthetic data can be problematic because it
often lacks the complexity of actual data and can lead to model
collapse in a real-life setting.83 Patient privacy concerns should be
addressed from the training stage itself by excluding any patient-spe-
cific identifiers like name, address, andmedical record numbers.

The LLM design for the medical domain should also consider
the need for tighter regulatory compliances in this field. Models
that can provide confidence scores, generating receiver-operating-
characteristics curves, are explainable and trained to be fair in terms
of patient gender, race, and age and are more likely to survive regu-
latory scrutiny. Ethical concerns must be addressed to prevent
perpetuating biases from training data.69 Compliance with regu-
lations like the Health Insurance Portability and Accountability
Act of 1996 (HIPAA) is essential for maintaining data privacy
and regulatory compliance.84 Open-source LLMs that can operate
locally without sharing data with third parties are a promising pri-
vacy-preserving alternative.85 Open-source models (eg, LLaMA)
are less reliant on proprietary data sources, potentially increasing
transparency and accessibility.14 For proprietary models, additional
considerations with regard to the source and quality of training
data and any related copyright issues also need to be addressed
prior to implementation.

Validating the information generated by LLMs is essential
and requires regular audits, fairness-aware training, and ethical
guidelines.64,67,86 Paraphrasing a question or providing additional
context to an LLM can change the subsequent response.83 Hence,
the validation needs to be not only on scientific rigor but also on
the contextual understanding of LLM. For example, a rounded
peripheral hyper density on a non contrast CT may reflect a
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contusion (in the context of trauma), a metastatic lesion (in a
patient with a known malignant melanoma), a spontaneous
hemorrhage (in an older patient with amyloid angiopathy), or
a hemorrhagic venous infarct (in a young female on oral con-
traceptives). Understanding the clinical context in such cases
is critical. Traditional scores of accuracy and performance metrics,
therefore, may not fully evaluate such models. Similarly, LLM per-
formance may change over time (LLM drift) and can be especially
troubling for proprietary models where little is known about the
underlying architecture and training data used.83 Additional vali-
dation should include testing the LLM on a mix of population
cohorts to ensure the model performance is similar with regard to
the patient’s gender, demographics, and geographical distribution,
ensuring model fairness and lack of bias. LLMs often struggle with
outdated information because of static training data. Not only is it
important for the LLM to be able to retrieve information from a
continuously updated database, but it should also be able to
prioritize more recent critical changes over redundant but
over-represented literature. Combining LLMs with external
data retrieval systems can enhance content generation.87 For
example, RadioRAG, a model developed to retrieve real-time
information from online resources (like Radiopaedia), variably
improved the performance of various LLMs.88 The recent launch
of OpenAI o1-preview series aims to tackle complex reasoning
tasks by allowing the model to spend more time thinking before
responding. This approach helps align it more closely with ethical
guidelines and reduces the risk of unsafe or biased content. This
model demonstrates expert-level performance on challenging
problems by incorporating advanced reasoning capabilities to
adhere better to safety protocols and ensure thoughtful, reliable
outputs.89

One must also consider the more practical challenges to LLM
implementation, including the need for additional energy and
infrastructure, resources to ensure continued compliance with
regulatory standards, potential safety risks, and medicolegal impli-
cations that may offset any efficiency gains. There is also a lack of
clarity regarding the cost structure, as some companies may charge
based on a number of tokens while others may charge based on
hours of usage. Additional costs related to network usage, embed-
ding (use of RAG), and periodic learning will also need to be con-
sidered.90 It is also unclear if LLM behavior may change with
software or scanner upgrades or the introduction of newer
sequences. Finally, establishing mechanisms for fixing liability
when an incorrect model decision impacts patient care is also
critical and requires both local and national coordination to be
uniformly implemented.

In terms of the role of LLMs in neuroradiology, given the
uncharted territory, it may be helpful to first validate these models
in lower-risk clinical workflows where the LLM output may be
annoying or unhelpful but not detrimental to patient health. These
may include study protocolling for common exams, summarizing
medical history or prior MRI reports, lesion segmentation, and
volumetry. Such outputs are open to validation and allow for a
more nuanced model evaluation. Using LLMs for lesion characteri-
zation or differential diagnosis generation sounds exciting but can
pose considerable challenges in real-life settings. It is also impor-
tant that the model is interpretable. For this, the model would

provide not only the possible differential considerations but also
the factors that the models considered and how the model weighed
them. Another important consideration is rigorous model testing,
as model performance may be impacted by model size, domain-
specific nature, prompt engineering, and optimization.91 By fo-
cusing on these areas in the near future, the field can make early
inroads in developing AI solutions that effectively address the
complex needs of radiology.

The current challenges in the LLM field also underscore the
need for continued short- and long-term research into this field
to ensure LLMs are fully utilized. These would include further
work into LLMs that are fair, ethical, equitable, and unbiased.
Mechanisms that improve model explainability, allow inherent
safety guardrails, and minimize or stop hallucinations would
further improve user trust. Similarly, further research is needed
to find ways for an LLM to continuously update with relevant
literature without necessarily forgetting prior information and
explore new methods to identify model performance degradation.
Equally importantly, further research into new and innovative
methods of model validation that use a multi faceted approach
beyond traditional performance metrics is needed.

At this time, it is difficult to predict the eventual extent and
scale of disruption that LLMs may cause and how they might
reshape the role of radiologists in the future. It is possible that
LLMs may reduce or eliminate the need for mundane tasks such
as study protocolling for common indications, make radiology
reports more objective through volumetric inputs, reduce radiol-
ogist effort by summarizing impressions, or help with clinical
workflows such as patient scheduling, summarizing patient his-
tory, and treatment details. LLMs may also play an important
role in trainee education, simplifying complex topics, or in
research by helping with data collection or annotation. LLMs,
in essence, have vast unrealized potential that is dependent on
how well the existing challenges are addressed.

CONCLUSIONS
LLMs have transformative potential in radiology with several
potential medical applications, but their effective implementation
requires addressing key limitations. Researchers and healthcare
professionals must navigate these limitations and employ innova-
tive solutions to maximize LLM effectiveness. The future of LLMs
in radiology lies in addressing these challenges through interdisci-
plinary collaboration, ongoing research, and the development of
ethical, transparent, and privacy-compliant AI systems. Successful
clinical implementation of LLMs would require considerable coor-
dination between domain experts in medicine and computer scien-
ces, researchers, and industry and regulatory authorities.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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