Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleArtificial Intelligence
Open Access

Automated Segmentation of MRI White Matter Hyperintensities in 8421 Patients with Acute Ischemic Stroke

Hosung Kim, Wi-Sun Ryu, Dawid Schellingerhout, Jonghyeok Park, Jinyong Chung, Sang-Wuk Jeong, Dong-Seok Gwak, Beom Joon Kim, Joon-Tae Kim, Keun-Sik Hong, Kyung Bok Lee, Tai Hwan Park, Jong-Moo Park, Kyusik Kang, Yong-Jin Cho, Byung-Chul Lee, Kyung-Ho Yu, Mi Sun Oh, Soo Joo Lee, Jae-Kwan Cha, Dae-Hyun Kim, Jun Lee, Man Seok Park, Hee-Joon Bae and Dong-Eog Kim
American Journal of Neuroradiology December 2024, 45 (12) 1885-1894; DOI: https://doi.org/10.3174/ajnr.A8418
Hosung Kim
aFrom the USC Stevens Neuroimaging and Informatics Institute (H.K.), Keck School of Medicine of USC, University of Southern California, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wi-Sun Ryu
bArtificial Intelligence Research Center (W.-S.R, J.P.), JLK Inc, Seoul, Republic of Korea
cNational Priority Research Center for Stroke and Department of Neurology (W.-S.R, J.C., S.-W.J., D.-S.G., D.-E.K.), Dongguk University Ilsan Hospital, Goyang, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Wi-Sun Ryu
Dawid Schellingerhout
dDepartment of Neuroradiology and Imaging Physics (D.S.), The University of Texas M.D. Anderson Cancer Center, Houston, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Dawid Schellingerhout
Jonghyeok Park
bArtificial Intelligence Research Center (W.-S.R, J.P.), JLK Inc, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jinyong Chung
cNational Priority Research Center for Stroke and Department of Neurology (W.-S.R, J.C., S.-W.J., D.-S.G., D.-E.K.), Dongguk University Ilsan Hospital, Goyang, Republic of Korea
eBioimaging Data Curation Center (J.C., D.-S.G., D.-E.K.), KOREA-BioData Station, Daejeon, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jinyong Chung
Sang-Wuk Jeong
cNational Priority Research Center for Stroke and Department of Neurology (W.-S.R, J.C., S.-W.J., D.-S.G., D.-E.K.), Dongguk University Ilsan Hospital, Goyang, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sang-Wuk Jeong
Dong-Seok Gwak
cNational Priority Research Center for Stroke and Department of Neurology (W.-S.R, J.C., S.-W.J., D.-S.G., D.-E.K.), Dongguk University Ilsan Hospital, Goyang, Republic of Korea
eBioimaging Data Curation Center (J.C., D.-S.G., D.-E.K.), KOREA-BioData Station, Daejeon, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Beom Joon Kim
fDepartment of Neurology (B.J.K., H.-J.B.), Seoul National University Bundang Hospital, Seongnam, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Beom Joon Kim
Joon-Tae Kim
gDepartment of Neurology (J.-T.K., M.S.P.,), Chonnam National University Hospital, Gwangju, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Keun-Sik Hong
hDepartment of Neurology (K.-S.H., Y,-J.C.), Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kyung Bok Lee
iDepartment of Neurology (K.B.L.), Soonchunhyang University Hospital, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kyung Bok Lee
Tai Hwan Park
jDepartment of Neurology (T.H.P.), Seoul Medical Center, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jong-Moo Park
kDepartment of Neurology (J.-M.P.), Uijeongbu Eulji Medical Center, Uijeongbu, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kyusik Kang
lDepartment of Neurology (K.K.), Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yong-Jin Cho
hDepartment of Neurology (K.-S.H., Y,-J.C.), Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Byung-Chul Lee
mDepartment of Neurology (B.-C.L., K.-H.Y., M.S.O.), Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kyung-Ho Yu
mDepartment of Neurology (B.-C.L., K.-H.Y., M.S.O.), Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mi Sun Oh
mDepartment of Neurology (B.-C.L., K.-H.Y., M.S.O.), Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Soo Joo Lee
nDepartment of Neurology (S.J.L.), Eulji University Hospital, Daejeon, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jae-Kwan Cha
oDepartment of Neurology (J.-K.C., D.-H.K.), Dong-A University Hospital, Busan, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dae-Hyun Kim
oDepartment of Neurology (J.-K.C., D.-H.K.), Dong-A University Hospital, Busan, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jun Lee
pDepartment of Neurology (J.L.), Yeungnam University Hospital, Daegu, Republic of Korea.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Man Seok Park
gDepartment of Neurology (J.-T.K., M.S.P.,), Chonnam National University Hospital, Gwangju, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hee-Joon Bae
fDepartment of Neurology (B.J.K., H.-J.B.), Seoul National University Bundang Hospital, Seongnam, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hee-Joon Bae
Dong-Eog Kim
cNational Priority Research Center for Stroke and Department of Neurology (W.-S.R, J.C., S.-W.J., D.-S.G., D.-E.K.), Dongguk University Ilsan Hospital, Goyang, Republic of Korea
eBioimaging Data Curation Center (J.C., D.-S.G., D.-E.K.), KOREA-BioData Station, Daejeon, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Dong-Eog Kim
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Debette S,
    2. Markus HS
    . The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 2010;341:c3666 doi:10.1136/bmj.c3666 pmid:20660506
    Abstract/FREE Full Text
  2. 2.↵
    1. Ryu WS,
    2. Schellingerhout D,
    3. Hong KS, et al
    . White matter hyperintensity load on stroke recurrence and mortality at 1 year after ischemic stroke. Neurology 2019;93:e578–89 doi:10.1212/WNL.0000000000007896 pmid:31308151
    Abstract/FREE Full Text
  3. 3.↵
    1. Ryu WS,
    2. Woo SH,
    3. Schellingerhout D, et al
    . Stroke outcomes are worse with larger leukoaraiosis volumes. Brain 2017;140:158–70 doi:10.1093/brain/aww259 pmid:28008000
    CrossRefPubMed
  4. 4.↵
    1. Prins ND,
    2. Scheltens P
    . White matter hyperintensities, cognitive impairment and dementia: an update. Nat Rev Neurol 2015;11:157–65 doi:10.1038/nrneurol.2015.10 pmid:25686760
    CrossRefPubMed
  5. 5.↵
    1. Herrmann LL,
    2. Le Masurier M,
    3. Ebmeier KP
    . White matter hyperintensities in late life depression: a systematic review. J Neurol Neurosurg Psychiatry 2007;79:619–24 doi:10.1136/jnnp.2007.124651
    CrossRefPubMed
  6. 6.↵
    1. Wardlaw JM,
    2. Smith EE,
    3. Biessels GJ, et al
    . Neuroimaging; STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1). standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013;12:822–38 doi:10.1016/S1474-4422(13)70124-8 pmid:23867200
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Xiong Y,
    2. Yang J,
    3. Wong A, et al
    . Operational definitions improve reliability of the age-related white matter changes scale. Eur J Neurol 2011;18:744–49 doi:10.1111/j.1468-1331.2010.03272.x pmid:21138503
    CrossRefPubMed
  8. 8.↵
    1. Rost NS,
    2. Brodtmann A,
    3. Pase MP, et al
    . Post-stroke cognitive impairment and dementia. Circ Res 2022;130:1252–71 doi:10.1161/CIRCRESAHA.122.319951 pmid:35420911
    CrossRefPubMed
  9. 9.↵
    1. Alber J,
    2. Alladi S,
    3. Bae HJ, et al
    . White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): knowledge gaps and opportunities. Alzheimers Dement (N Y) 2019;5:107–17 doi:10.1016/j.trci.2019.02.001 pmid:31011621
    CrossRefPubMed
  10. 10.↵
    1. Black S,
    2. Gao F,
    3. Bilbao J
    . Understanding white matter disease: imaging-pathological correlations in vascular cognitive impairment. Stroke 2009;40:S48–52 doi:10.1161/STROKEAHA.108.537704 pmid:19064767
    Abstract/FREE Full Text
  11. 11.↵
    1. Carass A,
    2. Roy S,
    3. Gherman A, et al
    . Evaluating white matter lesion segmentations with refined Sorensen-Dice analysis. Sci Rep 2020;10:8242 doi:10.1038/s41598-020-64803-w pmid:32427874
    CrossRefPubMed
  12. 12.↵
    1. Park G,
    2. Hong J,
    3. Duffy BA, et al
    . White matter hyperintensities segmentation using the ensemble U-Net with multi-scale highlighting foregrounds. Neuroimage 2021;237:118140 doi:10.1016/j.neuroimage.2021.118140 pmid:33957235
    CrossRefPubMed
  13. 13.↵
    1. Ryu WS,
    2. Kang YR,
    3. Noh YG, et al
    . Acute infarct segmentation on diffusion-weighted imaging using deep learning algorithm and RAPID MRI. J Stroke 2023;25:425–29 doi:10.5853/jos.2023.02145 pmid:37813675
    CrossRefPubMed
  14. 14.↵
    1. Noh YG,
    2. Ryu WS,
    3. Schellingerhout D, et al
    . Deep learning algorithms for automatic segmentation of acute cerebral infarcts on diffusion-weighted images: effects of training data sample size, transfer learning, and data features. 2023. medRxiv https://www.medrxiv.org/content/medrxiv/early/2023/07/09/2023.07.02.23292150.full.pdf. Accessed July 2, 2023
  15. 15.↵
    1. Li X,
    2. Zhao Y,
    3. Jiang J, et al
    . White matter hyperintensities segmentation using an ensemble of neural networks. Hum Brain Mapp 2022;43:929–39 doi:10.1002/hbm.25695 pmid:34704337
    CrossRefPubMed
  16. 16.↵
    1. Sundaresan V,
    2. Zamboni G,
    3. Rothwell PM, et al
    . Triplanar ensemble U-Net model for white matter hyperintensities segmentation on MR images. Med Image Anal 2021;73:102184 doi:10.1016/j.media.2021.102184 pmid:34325148
    CrossRefPubMed
  17. 17.↵
    1. Ryu WS,
    2. Woo SH,
    3. Schellingerhout D, et al
    . Grading and interpretation of white matter hyperintensities using statistical maps. Stroke 2014;45:3567–75 doi:10.1161/STROKEAHA.114.006662 pmid:25388424
    Abstract/FREE Full Text
  18. 18.↵
    1. Guerrero R,
    2. Qin C,
    3. Oktay O, et al
    . White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. Neuroimage Clin 2018;17:918–34 doi:10.1016/j.nicl.2017.12.022 pmid:29527496
    CrossRefPubMed
  19. 19.↵
    1. Lee AR,
    2. Woo I,
    3. Kang DW, et al
    . Fully automated segmentation on brain ischemic and white matter hyperintensities lesions using semantic segmentation networks with squeeze-and-excitation blocks in MRI. Informatics in Medicine Unlocked 2020;21:100440 doi:10.1016/j.imu.2020.100440
    CrossRef
  20. 20.↵
    1. Zhou K,
    2. Liu Z,
    3. Qiao Y, et al
    . Domain generalization: a survey. IEEE Trans Pattern Anal Mach Intell 2022;45:4396–415 doi:10.1109/TPAMI.2022.3195549 pmid:35914036
    CrossRefPubMed
  21. 21.↵
    1. Mehrtash A,
    2. Wells WM,
    3. Tempany CM, et al
    . Confidence calibration and predictive uncertainty estimation for deep medical image segmentation. IEEE Trans Med Imaging 2020;39:3868–78 doi:10.1109/TMI.2020.3006437 pmid:32746129
    CrossRefPubMed
  22. 22.↵
    1. van Erven T,
    2. Harremoes P
    . Rényi divergence and Kullback-Leibler divergence. IEEE Trans Inform Theory 2014;60:3797–820 doi:10.1109/TIT.2014.2320500
    CrossRef
  23. 23.↵
    1. Ryu WS,
    2. Schellingerhout D,
    3. Hong KS, et al
    . Relation of pre-stroke aspirin use with cerebral infarct volume and functional outcomes. Ann Neurol 2021;90:763–76 doi:10.1002/ana.26219 pmid:34536234
    CrossRefPubMed
  24. 24.↵
    1. Kim DE,
    2. Park JH,
    3. Schellingerhout D, et al
    . Mapping the supratentorial cerebral arterial territories using 1160 large artery infarcts. JAMA Neurol 2019;76:72–80 doi:10.1001/jamaneurol.2018.2808 pmid:30264158
    CrossRefPubMed
  25. 25.↵
    1. Kim DE,
    2. Ryu WS,
    3. Schellingerhout D, et al
    . Estimation of acute infarct volume with reference maps: a simple visual tool for decision making in thrombectomy cases. J Stroke 2019;21:69–77 doi:10.5853/jos.2018.03202 pmid:30732442
    CrossRefPubMed
  26. 26.↵
    1. Ryu WS,
    2. Schellingerhout D,
    3. Ahn HS, et al
    . Hemispheric asymmetry of white matter hyperintensity in association with lacunar infarction. J Am Heart Assoc 2018;7:e010653 doi:10.1161/JAHA.118.010653 pmid:30571500
    CrossRefPubMed
  27. 27.↵
    1. Chityala R,
    2. Pudipeddi S
    . Image Processing and Acquisition using Python. CRC Press; 2020; 89–107
  28. 28.↵
    1. Hu J,
    2. Shen L,
    3. Sun G
    . Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:7132–41
  29. 29.↵
    1. Huang H,
    2. Lin L,
    3. Tong R, et al
    . Unet 3+: a full-scale connected unet for medical image segmentation. In: Proceedings of the 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). May 4–8, 2020. Barcelona, Spain; 10555–59
  30. 30.↵
    1. Lakshminarayanan B,
    2. Pritzel A,
    3. Blundell C
    . Simple and scalable predictive uncertainty estimation using deep ensembles. In: Proceedings of the Annual Conference Neural Information Processing Systems. December 4–8, 2017. Long Beach, California
  31. 31.↵
    1. Jungo A,
    2. Reyes M
    . Assessing reliability and challenges of uncertainty estimations for medical image segmentation. Medical Image Computing and Computer Assisted Intervention–MICCAI 2019. Springer-Verlag; 2019:48–56
  32. 32.↵
    1. Tuohy S,
    2. O’Cualain D,
    3. Jones E, et al
    . Distance determination for an automobile environment using inverse perspective mapping in OpenCV. In: Proceedings of the IET Irish Signals and Systems Conference. June14, 2010. Belfast, Northern Ireland
  33. 33.↵
    1. Lin LI
    . A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989;45:255–68 doi:10.2307/2532051
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Altman D
    . Practical Statistics for Medical Research. Chapman & Hall/CRC Texts in Statistical Science. 1991; 396–439
  35. 35.↵
    1. Kapeller P,
    2. Barber R,
    3. Vermeulen RJ, et al
    ; European Task Force of Age-Related White Matter Changes.Visual rating of age-related white matter changes on magnetic resonance imaging: scale comparison, interrater agreement, and correlations with quantitative measurements. Stroke 2003;34:441–45 doi:10.1161/01.str.0000049766.26453.e9 pmid:12574557
    Abstract/FREE Full Text
  36. 36.↵
    1. van den Heuvel DM,
    2. ten Dam VH,
    3. de Craen AJ, et al
    ; PROSPER Study Group. Measuring longitudinal white matter changes: comparison of a visual rating scale with a volumetric measurement. AJNR Am J Neuroradiol 2006;27:875–78 pmid:16611781
    PubMed
  37. 37.↵
    1. Seo H,
    2. Badiei Khuzani M,
    3. Vasudevan V, et al
    . Machine learning techniques for biomedical image segmentation: an overview of technical aspects and introduction to state-of-art applications. Med Phys 2020;47:e148–67 doi:10.1002/mp.13649 pmid:32418337
    CrossRefPubMed
  38. 38.↵
    1. Zhang L,
    2. Wang X,
    3. Yang D, et al
    . Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans Med Imaging 2020;39:2531–40 doi:10.1109/TMI.2020.2973595 pmid:32070947
    CrossRefPubMed
  39. 39.↵
    1. Çiçek Ö,
    2. Abdulkadir A,
    3. Lienkamp SS, et al
    . 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. Springer-Verlag International Publishing; 2016:424–32
  40. 40.↵
    1. Isensee F,
    2. Jaeger PF,
    3. Kohl SAA, et al
    . nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 2021;18:203–11 doi:10.1038/s41592-020-01008-z pmid:33288961
    CrossRefPubMed
  41. 41.↵
    1. Morrison C,
    2. Dadar M,
    3. Manera AL, et al
    . Racial differences in white matter hyperintensity burden in older adults. Neurobiol Aging 2023;122:112–19 doi:10.1016/j.neurobiolaging.2022.11.012 pmid:36543016
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 45 (12)
American Journal of Neuroradiology
Vol. 45, Issue 12
1 Dec 2024
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Automated Segmentation of MRI White Matter Hyperintensities in 8421 Patients with Acute Ischemic Stroke
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Hosung Kim, Wi-Sun Ryu, Dawid Schellingerhout, Jonghyeok Park, Jinyong Chung, Sang-Wuk Jeong, Dong-Seok Gwak, Beom Joon Kim, Joon-Tae Kim, Keun-Sik Hong, Kyung Bok Lee, Tai Hwan Park, Jong-Moo Park, Kyusik Kang, Yong-Jin Cho, Byung-Chul Lee, Kyung-Ho Yu, Mi Sun Oh, Soo Joo Lee, Jae-Kwan Cha, Dae-Hyun Kim, Jun Lee, Man Seok Park, Hee-Joon Bae, Dong-Eog Kim
Automated Segmentation of MRI White Matter Hyperintensities in 8421 Patients with Acute Ischemic Stroke
American Journal of Neuroradiology Dec 2024, 45 (12) 1885-1894; DOI: 10.3174/ajnr.A8418

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
AutoSegmentation of Stroke MRI Hyperintensities
Hosung Kim, Wi-Sun Ryu, Dawid Schellingerhout, Jonghyeok Park, Jinyong Chung, Sang-Wuk Jeong, Dong-Seok Gwak, Beom Joon Kim, Joon-Tae Kim, Keun-Sik Hong, Kyung Bok Lee, Tai Hwan Park, Jong-Moo Park, Kyusik Kang, Yong-Jin Cho, Byung-Chul Lee, Kyung-Ho Yu, Mi Sun Oh, Soo Joo Lee, Jae-Kwan Cha, Dae-Hyun Kim, Jun Lee, Man Seok Park, Hee-Joon Bae, Dong-Eog Kim
American Journal of Neuroradiology Dec 2024, 45 (12) 1885-1894; DOI: 10.3174/ajnr.A8418
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Graphical Abstract
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Segmentation of leukoaraiosis on noncontrast head CTs using CT-MRI paired data without human annotation
  • Crossref (1)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Artificial intelligence in neuroimaging with a focus on acute and degenerative neurologic disorders: a narrative review
    Leonard Sunwoo, Byung Se Choi
    Journal of the Korean Medical Association 2025 68 5

More in this TOC Section

Artificial Intelligence

  • AI-Enhanced Photon-Counting CT of Temporal Bone
  • An AI De-identification Method for Pediatric MRIs
  • Aneurysm Segmentation on MRI-TOF with AI
Show more Artificial Intelligence

Neurovascular/Stroke Imaging

  • DMV, IFS and CSVD burden
  • Role of Hypoperfusion Intensity Ratio in Vessel Occlusions: A Review on Safety and Clinical Outcomes
  • DMV relationship with SVD and DTI measures in RSSI
Show more Neurovascular/Stroke Imaging

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire