Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain
Open Access

Performance of Standardized Relative CBV for Quantifying Regional Histologic Tumor Burden in Recurrent High-Grade Glioma: Comparison against Normalized Relative CBV Using Image-Localized Stereotactic Biopsies

J.M. Hoxworth, J.M. Eschbacher, A.C. Gonzales, K.W. Singleton, G.D. Leon, K.A. Smith, A.M. Stokes, Y. Zhou, G.L. Mazza, A.B. Porter, M.M. Mrugala, R.S. Zimmerman, B.R. Bendok, D.P. Patra, C. Krishna, J.L. Boxerman, L.C. Baxter, K.R. Swanson, C.C. Quarles, K.M. Schmainda and L.S. Hu
American Journal of Neuroradiology March 2020, 41 (3) 408-415; DOI: https://doi.org/10.3174/ajnr.A6486
J.M. Hoxworth
aFrom the Departments of Radiology (J.M.H., Y.Z., L.S.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.M. Hoxworth
J.M. Eschbacher
fDepartments of Pathology (J.M.E.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.M. Eschbacher
A.C. Gonzales
bPsychiatry and Psychology (A.C.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A.C. Gonzales
K.W. Singleton
ePrecision Neurotherapeutics Lab (K.W.S., G.D.L., B.R.B., K.R.S.), Mayo Clinic in Arizona, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K.W. Singleton
G.D. Leon
ePrecision Neurotherapeutics Lab (K.W.S., G.D.L., B.R.B., K.R.S.), Mayo Clinic in Arizona, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G.D. Leon
K.A. Smith
iKeller Center for Imaging Innovation (A.M.S.), Barrow Neurological Institute, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K.A. Smith
A.M. Stokes
iKeller Center for Imaging Innovation (A.M.S.), Barrow Neurological Institute, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A.M. Stokes
Y. Zhou
aFrom the Departments of Radiology (J.M.H., Y.Z., L.S.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Zhou
G.L. Mazza
jDepartment of Health Sciences Research (G.L.M.), Division of Biomedical Statistics and Informatics, Mayo Clinic Scottsdale, Scottsdale, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G.L. Mazza
A.B. Porter
cNeuro-Oncology (A.B.P., M.M.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A.B. Porter
M.M. Mrugala
cNeuro-Oncology (A.B.P., M.M.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.M. Mrugala
R.S. Zimmerman
dNeurosurgery (R.S.Z., C.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.S. Zimmerman
B.R. Bendok
ePrecision Neurotherapeutics Lab (K.W.S., G.D.L., B.R.B., K.R.S.), Mayo Clinic in Arizona, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B.R. Bendok
D.P. Patra
kDepartments of Neurosurgery (D.P.P.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D.P. Patra
C. Krishna
dNeurosurgery (R.S.Z., C.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Krishna
J.L. Boxerman
mDepartment of Diagnostic Imaging (J.L.B.), Rhode Island Hospital, Providence, Rhode Island
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.L. Boxerman
L.C. Baxter
lNeuropsychology (L.C.B.), Mayo Clinic Hospital, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L.C. Baxter
K.R. Swanson
ePrecision Neurotherapeutics Lab (K.W.S., G.D.L., B.R.B., K.R.S.), Mayo Clinic in Arizona, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K.R. Swanson
C.C. Quarles
hNeurobiology (C.C.Q.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.C. Quarles
K.M. Schmainda
nDepartment of Radiology (K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K.M. Schmainda
L.S. Hu
aFrom the Departments of Radiology (J.M.H., Y.Z., L.S.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L.S. Hu
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Shiroishi MS,
    2. Boxerman JL,
    3. Pope WB
    . Physiologic MRI for assessment of response to therapy and prognosis in glioblastoma. Neuro Oncol 2016;18:467–78 doi:10.1093/neuonc/nov179 pmid:26364321
    CrossRefPubMed
  2. 2.↵
    1. Brandsma D,
    2. van den Bent MJ
    . Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 2009;22:633–38 doi:10.1097/WCO.0b013e328332363e pmid:19770760
    CrossRefPubMed
  3. 3.↵
    1. Fink J,
    2. Born D,
    3. Chamberlain MC
    . Pseudoprogression: relevance with respect to treatment of high-grade gliomas. Curr Treat Options Oncol 2011;12:240–52 doi:10.1007/s11864-011-0157-1 pmid:21594589
    CrossRefPubMed
  4. 4.↵
    1. Clarke JL,
    2. Chang S
    . Pseudoprogression and pseudoresponse: challenges in brain tumor imaging. Curr Neurol Neurosci Rep 2009;9:241–46 doi:10.1007/s11910-009-0035-4 pmid:19348713
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Hu LS,
    2. Eschbacher JM,
    3. Heiserman JE, et al
    . Reevaluating the imaging definition of tumor progression: perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival. Neuro Oncol 2012;14:919–30 doi:10.1093/neuonc/nos112 pmid:22561797
    CrossRefPubMed
  6. 6.↵
    1. Kim JH,
    2. Bae Kim Y,
    3. Han JH, et al
    . Pathologic diagnosis of recurrent glioblastoma: morphologic, immunohistochemical, and molecular analysis of 20 paired cases. Am J Surg Pathol 2012;36:620–28 doi:10.1097/PAS.0b013e318246040c pmid:22441548
    CrossRefPubMed
  7. 7.↵
    1. Forsyth PA,
    2. Kelly PJ,
    3. Cascino TL, et al
    . Radiation necrosis or glioma recurrence: is computer-assisted stereotactic biopsy useful? J Neurosurg 1995;82:436–44 doi:10.3171/jns.1995.82.3.0436 pmid:7861222
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Rock JP,
    2. Hearshen D,
    3. Scarpace L, et al
    . Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery 2002;51:912–19; discussion 919–20 doi:10.1227/00006123-200210000-00010 pmid:12234397
    CrossRefPubMedWeb of Science
  9. 9.↵
    Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008;455:1061–68 doi:10.1038/nature07385 pmid:18772890
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Patel P,
    2. Baradaran H,
    3. Delgado D, et al
    . MR perfusion-weighted imaging in the evaluation of high-grade gliomas after treatment: a systematic review and meta-analysis. Neuro Oncol 2017;19:118–27 doi:10.1093/neuonc/now148 pmid:27502247
    CrossRefPubMed
  11. 11.↵
    1. Prah MA,
    2. Al-Gizawiy MM,
    3. Mueller WM, et al
    . Spatial discrimination of glioblastoma and treatment effect with histologically-validated perfusion and diffusion magnetic resonance imaging metrics. J Neurooncol 2018;136:13–21 doi:10.1007/s11060-017-2617-3 pmid:28900832
    CrossRefPubMed
  12. 12.↵
    1. Barajas RF,
    2. Chang JS,
    3. Segal MR Jr., et al
    . Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2009;253:486–96 doi:10.1148/radiol.2532090007 pmid:19789240
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Hu LS,
    2. Baxter LC,
    3. Smith KA, et al
    . Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 2009;30:552–58 doi:10.3174/ajnr.A1377 pmid:19056837
    Abstract/FREE Full Text
  14. 14.↵
    1. Fatterpekar GM,
    2. Galheigo D,
    3. Narayana A, et al
    . Treatment-related change versus tumor recurrence in high-grade gliomas: a diagnostic conundrum—use of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI. AJR Am J Roentgenol 2012;198:19–26 doi:10.2214/AJR.11.7417 pmid:22194475
    CrossRefPubMed
  15. 15.↵
    1. Welker K,
    2. Boxerman J,
    3. Kalnin A, et al
    ; American Society of Functional Neuroradiology MR Perfusion Standards and Practice Subcommittee of the ASFNR Clinical Practice Committee. ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain. AJNR Am J Neuroradiol 2015;36:E41–51 doi:10.3174/ajnr.A4341 pmid:25907520
    Abstract/FREE Full Text
  16. 16.↵
    1. Semmineh NB,
    2. Bell LC,
    3. Stokes AM, et al
    . Optimization of acquisition and analysis methods for clinical dynamic susceptibility contrast MRI using a population-based digital reference object. AJNR Am J Neuroradiol 2018;39:1981–88 doi:10.3174/ajnr.A5827 pmid:30309842
    Abstract/FREE Full Text
  17. 17.↵
    1. Leu K,
    2. Boxerman JL,
    3. Ellingson BM
    . Effects of MRI protocol parameters, preload injection dose, fractionation strategies, and leakage correction algorithms on the fidelity of dynamic-susceptibility contrast MRI estimates of relative cerebral blood volume in gliomas. AJNR Am J Neuroradiol 2017;38:478–84 doi:10.3174/ajnr.A5027 pmid:28034995
    Abstract/FREE Full Text
  18. 18.↵
    1. Hu LS,
    2. Kelm Z,
    3. Korfiatis P, et al
    . Impact of software modeling on the accuracy of perfusion MRI in glioma. AJNR Am J Neuroradiol 2015;36:2242–49 doi:10.3174/ajnr.A4451 pmid:26359151
    Abstract/FREE Full Text
  19. 19.↵
    1. Kelm ZS,
    2. Korfiatis PD,
    3. Lingineni RK, et al
    . Variability and accuracy of different software packages for dynamic susceptibility contrast magnetic resonance imaging for distinguishing glioblastoma progression from pseudoprogression. J Med Imaging (Bellingham) 2015;2:026001 doi:10.1117/1.JMI.2.2.026001 pmid:26158114
    CrossRefPubMed
  20. 20.↵
    1. Hu LS,
    2. Baxter LC,
    3. Pinnaduwage DS, et al
    . Optimized preload leakage-correction methods to improve the diagnostic accuracy of dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in posttreatment gliomas. AJNR Am J Neuroradiol 2010;31:40–48 doi:10.3174/ajnr.A1787 pmid:19749223
    Abstract/FREE Full Text
  21. 21.↵
    1. Boxerman JL,
    2. Schmainda KM,
    3. Weisskoff RM
    . Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006;27:859–67 pmid:16611779
    Abstract/FREE Full Text
  22. 22.↵
    1. Bedekar D,
    2. Jensen T,
    3. Schmainda KM
    . Standardization of relative cerebral blood volume (rCBV) image maps for ease of both inter- and intrapatient comparisons. Magn Reson Med 2010;64:907–13 doi:10.1002/mrm.22445 pmid:20806381
    CrossRefPubMed
  23. 23.↵
    1. Prah MA,
    2. Stufflebeam SM,
    3. Paulson ES, et al
    . Repeatability of standardized and normalized relative CBV in patients with newly diagnosed glioblastoma. AJNR Am J Neuroradiol 2015;36:1654–61 doi:10.3174/ajnr.A4374 pmid:26066626
    Abstract/FREE Full Text
  24. 24.↵
    1. Smits M,
    2. Bendszus M,
    3. Collette S, et al
    . Repeatability and reproducibility of relative cerebral blood volume measurement of recurrent glioma in a multicentre trial setting. Eur J Cancer 2019;114:89–96 doi:10.1016/j.ejca.2019.03.007 pmid:31078973
    CrossRefPubMed
  25. 25.↵
    1. Stupp R,
    2. Mason WP,
    3. van den Bent MJ, et al
    ; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352:987–96 doi:10.1056/NEJMoa043330 pmid:15758009
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Louis DN,
    2. Perry A,
    3. Reifenberger G, et al
    . The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016;131:803–20 doi:10.1007/s00401-016-1545-1 pmid:27157931
    CrossRefPubMed
  27. 27.↵
    1. Hu LS,
    2. Ning S,
    3. Eschbacher JM, et al
    . Multi-parametric MRI and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma. PLoS One 2015;10:e0141506 doi:10.1371/journal.pone.0141506 pmid:26599106
    CrossRefPubMed
  28. 28.↵
    1. Hu LS,
    2. Ning S,
    3. Eschbacher JM, et al
    . Radiogenomics to characterize regional genetic heterogeneity in glioblastoma. Neuro Oncol 2017;19:128–37 doi:10.1093/neuonc/now135 pmid:27502248
    CrossRefPubMed
  29. 29.↵
    1. Hu LS,
    2. Eschbacher JM,
    3. Dueck AC, et al
    . Correlations between perfusion MR imaging cerebral blood volume, microvessel quantification, and clinical outcome using stereotactic analysis in recurrent high-grade glioma. AJNR Am J Neuroradiol 2012;33:69–76 doi:10.3174/ajnr.A2743 pmid:22095961
    Abstract/FREE Full Text
  30. 30.↵
    1. Paulson ES,
    2. Schmainda KM
    . Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 2008;249:601–13 doi:10.1148/radiol.2492071659 pmid:18780827
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Kassner A,
    2. Annesley DJ,
    3. Zhu XP, et al
    . Abnormalities of the contrast re-circulation phase in cerebral tumors demonstrated using dynamic susceptibility contrast-enhanced imaging: a possible marker of vascular tortuosity. J Magn Reson Imaging 2000;11:103–13 doi:10.1002/(SICI)1522-2586(200002)11:2<103::AID-JMRI5>3.0.CO;2-Z pmid:10713941
    CrossRefPubMed
  32. 32.↵
    1. Nyul LG,
    2. Udupa JK
    . Approach to standardizing MR image intensity scale. In: Proceedings of the SPIE 1999;3658:595–603 doi:10.1117/12.349472
  33. 33.↵
    1. Burger PC,
    2. Mahley MS Jr.,
    3. Dudka L, et al
    . The morphologic effects of radiation administered therapeutically for intracranial gliomas: a postmortem study of 25 cases. Cancer 1979;44:1256–72 doi:10.1002/1097-0142(197910)44:4<1256::AID-CNCR2820440415>3.0.CO;2-T pmid:387205
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Bell LC,
    2. Stokes AM,
    3. Quarles CC
    . Analysis of postprocessing steps for residue function dependent dynamic susceptibility contrast (DSC)-MRI biomarkers and their clinical impact on glioma grading for both 1.5 and 3T. J Magn Reson Imaging 2020;51:547–53 doi:10.1002/jmri.26837 pmid:31206948
    CrossRefPubMed
  35. 35.↵
    1. Schmainda KM,
    2. Prah MA,
    3. Hu LS, et al
    . Moving toward a consensus DSC-MRI protocol: validation of a low-flip angle single-dose option as a reference standard for brain tumors. AJNR Am J Neuroradiol 2019;40:626–33 doi:10.3174/ajnr.A6015 pmid:30923088
    Abstract/FREE Full Text
  36. 36.↵
    1. Iv M,
    2. Liu X,
    3. Lavezo J, et al
    . Perfusion MRI-based fractional tumor burden differentiates between tumor and treatment effect in recurrent glioblastomas and informs clinical decision-making. AJNR Am J Neuroradiol 2019;40:1649–57 doi:10.3174/ajnr.A6211 pmid:31515215
    Abstract/FREE Full Text
  37. 37.↵
    1. Muruganandham M,
    2. Lupu M,
    3. Dyke JP, et al
    . Preclinical evaluation of tumor microvascular response to a novel antiangiogenic/antitumor agent RO0281501 by dynamic contrast-enhanced MRI at 1.5 T. Mol Cancer Ther 2006;5:1950–57 doi:10.1158/1535-7163.MCT-06-0010 pmid:16928815
    Abstract/FREE Full Text
  38. 38.↵
    1. Wilmes LJ,
    2. Pallavicini MG,
    3. Fleming LM, et al
    . AG-013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging 2007;25:319–27 doi:10.1016/j.mri.2006.09.041 pmid:17371720
    CrossRefPubMed
  39. 39.↵
    1. Doblas S,
    2. He T,
    3. Saunders D, et al
    . Glioma morphology and tumor-induced vascular alterations revealed in seven rodent glioma models by in vivo magnetic resonance imaging and angiography. J Magn Reson Imaging 2010;32:267–75 doi:10.1002/jmri.22263 pmid:20677250
    CrossRefPubMed
  40. 40.↵
    1. Schmainda KM,
    2. Zhang Z,
    3. Prah M, et al
    . Dynamic susceptibility contrast MRI measures of relative cerebral blood volume as a prognostic marker for overall survival in recurrent glioblastoma: results from the ACRIN 6677/RTOG 0625 multicenter trial. Neuro Oncol 2015;17:1148–56 doi:10.1093/neuonc/nou364 pmid:25646027
    CrossRefPubMed
  41. 41.↵
    1. Gerstner ER,
    2. Zhang Z,
    3. Fink JR, et al
    . ACRIN 6684: Assessment of Tumor Hypoxia in Newly Diagnosed Glioblastoma Using 18F-FMISO PET and MRI. Clin Cancer Res 2016;22:5079–86 doi:10.1158/1078-0432.CCR-15-2529 pmid:27185374
    Abstract/FREE Full Text
  42. 42.↵
    1. Barajas RF,
    2. Phillips JJ,
    3. Parvataneni R Jr., et al
    . Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR imaging. Neuro Oncol 2012;14:942–54 doi:10.1093/neuonc/nos128 pmid:22711606
    CrossRefPubMed
  43. 43.↵
    1. Stadlbauer A,
    2. Ganslandt O,
    3. Buslei R, et al
    . Gliomas: histopathologic evaluation of changes in directionality and magnitude of water diffusion at diffusion-tensor MR imaging. Radiology 2006;240:803–10 doi:10.1148/radiol.2403050937 pmid:16926329
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 41 (3)
American Journal of Neuroradiology
Vol. 41, Issue 3
1 Mar 2020
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Performance of Standardized Relative CBV for Quantifying Regional Histologic Tumor Burden in Recurrent High-Grade Glioma: Comparison against Normalized Relative CBV Using Image-Localized Stereotactic Biopsies
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
J.M. Hoxworth, J.M. Eschbacher, A.C. Gonzales, K.W. Singleton, G.D. Leon, K.A. Smith, A.M. Stokes, Y. Zhou, G.L. Mazza, A.B. Porter, M.M. Mrugala, R.S. Zimmerman, B.R. Bendok, D.P. Patra, C. Krishna, J.L. Boxerman, L.C. Baxter, K.R. Swanson, C.C. Quarles, K.M. Schmainda, L.S. Hu
Performance of Standardized Relative CBV for Quantifying Regional Histologic Tumor Burden in Recurrent High-Grade Glioma: Comparison against Normalized Relative CBV Using Image-Localized Stereotactic Biopsies
American Journal of Neuroradiology Mar 2020, 41 (3) 408-415; DOI: 10.3174/ajnr.A6486

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Performance of Standardized Relative CBV for Quantifying Regional Histologic Tumor Burden in Recurrent High-Grade Glioma: Comparison against Normalized Relative CBV Using Image-Localized Stereotactic Biopsies
J.M. Hoxworth, J.M. Eschbacher, A.C. Gonzales, K.W. Singleton, G.D. Leon, K.A. Smith, A.M. Stokes, Y. Zhou, G.L. Mazza, A.B. Porter, M.M. Mrugala, R.S. Zimmerman, B.R. Bendok, D.P. Patra, C. Krishna, J.L. Boxerman, L.C. Baxter, K.R. Swanson, C.C. Quarles, K.M. Schmainda, L.S. Hu
American Journal of Neuroradiology Mar 2020, 41 (3) 408-415; DOI: 10.3174/ajnr.A6486
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Multisite Benchmark Study for Standardized Relative CBV in Untreated Brain Metastases Using the DSC-MRI Consensus Acquisition Protocol
  • Identification of a Single-Dose, Low-Flip-Angle-Based CBV Threshold for Fractional Tumor Burden Mapping in Recurrent Glioblastoma
  • DSC Perfusion MRI-Derived Fractional Tumor Burden and Relative CBV Differentiate Tumor Progression and Radiation Necrosis in Brain Metastases Treated with Stereotactic Radiosurgery
  • Crossref (29)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • High-Grade Glioma Treatment Response Monitoring Biomarkers: A Position Statement on the Evidence Supporting the Use of Advanced MRI Techniques in the Clinic, and the Latest Bench-to-Bedside Developments. Part 1: Perfusion and Diffusion Techniques
    Otto M. Henriksen, María del Mar Álvarez-Torres, Patricia Figueiredo, Gilbert Hangel, Vera C. Keil, Ruben E. Nechifor, Frank Riemer, Kathleen M. Schmainda, Esther A. H. Warnert, Evita C. Wiegers, Thomas C. Booth
    Frontiers in Oncology 2022 12
  • Opportunities for improving brain cancer treatment outcomes through imaging-based mathematical modeling of the delivery of radiotherapy and immunotherapy
    David A. Hormuth, Maguy Farhat, Chase Christenson, Brandon Curl, C. Chad Quarles, Caroline Chung, Thomas E. Yankeelov
    Advanced Drug Delivery Reviews 2022 187
  • Assessment and prediction of glioblastoma therapy response: challenges and opportunities
    Dan Qi, Jing Li, C Chad Quarles, Ekokobe Fonkem, Erxi Wu
    Brain 2023 146 4
  • Integrated molecular and multiparametric MRI mapping of high-grade glioma identifies regional biologic signatures
    Leland S. Hu, Fulvio D’Angelo, Taylor M. Weiskittel, Francesca P. Caruso, Shannon P. Fortin Ensign, Mylan R. Blomquist, Matthew J. Flick, Lujia Wang, Christopher P. Sereduk, Kevin Meng-Lin, Gustavo De Leon, Ashley Nespodzany, Javier C. Urcuyo, Ashlyn C Gonzales, Lee Curtin, Erika M. Lewis, Kyle W. Singleton, Timothy Dondlinger, Aliya Anil, Natenael B. Semmineh, Teresa Noviello, Reyna A. Patel, Panwen Wang, Junwen Wang, Jennifer M. Eschbacher, Andrea Hawkins-Daarud, Pamela R. Jackson, Itamar S. Grunfeld, Christian Elrod, Gina L. Mazza, Sam C. McGee, Lisa Paulson, Kamala Clark-Swanson, Yvette Lassiter-Morris, Kris A. Smith, Peter Nakaji, Bernard R. Bendok, Richard S. Zimmerman, Chandan Krishna, Devi P. Patra, Naresh P. Patel, Mark Lyons, Matthew Neal, Kliment Donev, Maciej M. Mrugala, Alyx B. Porter, Scott C. Beeman, Todd R. Jensen, Kathleen M. Schmainda, Yuxiang Zhou, Leslie C. Baxter, Christopher L. Plaisier, Jing Li, Hu Li, Anna Lasorella, C. Chad Quarles, Kristin R. Swanson, Michele Ceccarelli, Antonio Iavarone, Nhan L. Tran
    Nature Communications 2023 14 1
  • Challenges, limitations, and pitfalls of PET and advanced MRI in patients with brain tumors: A report of the PET/RANO group
    Norbert Galldiks, Timothy J Kaufmann, Philipp Vollmuth, Philipp Lohmann, Marion Smits, Michael C Veronesi, Karl-Josef Langen, Roberta Rudà, Nathalie L Albert, Elke Hattingen, Ian Law, Markus Hutterer, Riccardo Soffietti, Michael A Vogelbaum, Patrick Y Wen, Michael Weller, Joerg-Christian Tonn
    Neuro-Oncology 2024 26 7
  • Update on neuroimaging in brain tumours
    Marion Smits
    Current Opinion in Neurology 2021 34 4
  • Conventional and Advanced Imaging Techniques in Post-treatment Glioma Imaging
    Anna Y. Li, Michael Iv
    Frontiers in Radiology 2022 2
  • DSC Perfusion MRI–Derived Fractional Tumor Burden and Relative CBV Differentiate Tumor Progression and Radiation Necrosis in Brain Metastases Treated with Stereotactic Radiosurgery
    F. Kuo, N.N. Ng, S. Nagpal, E.L. Pollom, S. Soltys, M. Hayden-Gephart, G. Li, D.E. Born, Michael
    American Journal of Neuroradiology 2022 43 5
  • A multi-reader comparison of normal-appearing white matter normalization techniques for perfusion and diffusion MRI in brain tumors
    Nicholas S. Cho, Akifumi Hagiwara, Francesco Sanvito, Benjamin M. Ellingson
    Neuroradiology 2023 65 3
  • Magnetic Resonance Imaging Mapping of Brain Tumor Burden: Clinical Implications for Neurosurgical Management: Case Report
    Jennifer M Connelly, Melissa A Prah, Fernando Santos-Pinheiro, Wade Mueller, Elizabeth Cochran, Kathleen M Schmainda
    Neurosurgery Open 2021 2 4

More in this TOC Section

Adult Brain

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Functional

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Brain Iron in Niemann-Pick Type C: 7T Study
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire