Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain
Open Access

Hybrid 3D/2D Convolutional Neural Network for Hemorrhage Evaluation on Head CT

P.D. Chang, E. Kuoy, J. Grinband, B.D. Weinberg, M. Thompson, R. Homo, J. Chen, H. Abcede, M. Shafie, L. Sugrue, C.G. Filippi, M.-Y. Su, W. Yu, C. Hess and D. Chow
American Journal of Neuroradiology September 2018, 39 (9) 1609-1616; DOI: https://doi.org/10.3174/ajnr.A5742
P.D. Chang
aFrom the Departments of Radiology (P.D.C., E.K., M.T., R.H., M.-Y.S., D.C.)
dDepartments of Radiology (P.D.C., L.S., C.H.), University of California, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P.D. Chang
E. Kuoy
aFrom the Departments of Radiology (P.D.C., E.K., M.T., R.H., M.-Y.S., D.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E. Kuoy
J. Grinband
eDepartment of Radiology (J.G.), Columbia University, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Grinband
B.D. Weinberg
fDepartment of Radiology (B.D.W.), Emory University School of Medicine, Atlanta, Georgia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B.D. Weinberg
M. Thompson
aFrom the Departments of Radiology (P.D.C., E.K., M.T., R.H., M.-Y.S., D.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Thompson
R. Homo
aFrom the Departments of Radiology (P.D.C., E.K., M.T., R.H., M.-Y.S., D.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. Homo
J. Chen
bNeurosurgery (J.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Chen
H. Abcede
cNeurology (H.A., M.S., W.Y.), University of California Irvine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H. Abcede
M. Shafie
cNeurology (H.A., M.S., W.Y.), University of California Irvine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Shafie
L. Sugrue
dDepartments of Radiology (P.D.C., L.S., C.H.), University of California, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Sugrue
C.G. Filippi
gDepartment of Radiology (C.G.F.), North Shore University Hospital, Long Island, New York.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.G. Filippi
M.-Y. Su
aFrom the Departments of Radiology (P.D.C., E.K., M.T., R.H., M.-Y.S., D.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.-Y. Su
W. Yu
cNeurology (H.A., M.S., W.Y.), University of California Irvine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for W. Yu
C. Hess
dDepartments of Radiology (P.D.C., L.S., C.H.), University of California, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Hess
D. Chow
aFrom the Departments of Radiology (P.D.C., E.K., M.T., R.H., M.-Y.S., D.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Chow
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. van Asch CJ,
    2. Luitse MJ,
    3. Rinkel GJ, et al
    . Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol 2010;9:167–76 doi:10.1016/S1474-4422(09)70340-0 pmid:20056489
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Goldstein JN,
    2. Gilson AJ
    . Critical care management of acute intracerebral hemorrhage. Curr Treat Options Neurol 2011;13:204–16 doi:10.1007/s11940-010-0109-2 pmid:21222062
    CrossRefPubMed
  3. 3.↵
    1. Heit JJ,
    2. Iv M,
    3. Wintermark M
    . Imaging of intracranial hemorrhage. J Stroke 2017;19:11–27 doi:10.5853/jos.2016.00563 pmid:28030895
    CrossRefPubMed
  4. 4.↵
    1. Glover M 4th.,
    2. Almeida RR,
    3. Schaefer PW, et al
    . Quantifying the impact of noninterpretive tasks on radiology report turn-around times. J Am Coll Radiol 2017;14:1498–1503 doi:10.1016/j.jacr.2017.07.023 pmid:28916177
    CrossRefPubMed
  5. 5.↵
    1. Davis SM,
    2. Broderick J,
    3. Hennerici M, et al
    . Recombinant Activated Factor VII Intracerebral Hemorrhage Trial Investigators. Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology 2006;66:1175–81 doi:10.1212/01.wnl.0000208408.98482.99 pmid:16636233
    Abstract/FREE Full Text
  6. 6.↵
    1. Kazui S,
    2. Naritomi H,
    3. Yamamoto H, et al
    . Enlargement of spontaneous intracerebral hemorrhage: incidence and time course. Stroke 1996;27:1783–87 doi:10.1161/01.STR.27.10.1783 pmid:8841330
    Abstract/FREE Full Text
  7. 7.↵
    1. Qureshi A,
    2. Palesch Y
    , ATACH II Investigators. Expansion of recruitment time window in antihypertensive treatment of acute cerebral hemorrhage (ATACH) II trial. J Vasc Interv Neurol 2012;5:6–9 pmid:23230458
    PubMed
  8. 8.↵
    1. Broderick JP,
    2. Brott TG,
    3. Duldner JE, et al
    . Volume of intracerebral hemorrhage: a powerful and easy-to-use predictor of 30-day mortality. Stroke 1993;24:987–93 doi:10.1161/01.STR.24.7.987 pmid:8322400
    Abstract/FREE Full Text
  9. 9.↵
    1. Butcher K,
    2. Laidlaw J
    . Current intracerebral haemorrhage management. J Clin Neurosci 2003;10:158–67 doi:10.1016/S0967-5868(02)00324-7 pmid:12637041
    CrossRefPubMed
  10. 10.↵
    1. Scherer M,
    2. Cordes J,
    3. Younsi A, et al
    . Development and validation of an automatic segmentation algorithm for quantification of intracerebral hemorrhage. Stroke 2016;47:2776–82 doi:10.1161/STROKEAHA.116.013779 pmid:27703089
    Abstract/FREE Full Text
  11. 11.↵
    1. Goodfellow I,
    2. Bengio Y,
    3. Courville A
    . Deep Learning. Cambridge: MIT Press; November 2016. ISBN: 9780262035613
  12. 12.↵
    1. Prevedello LM,
    2. Erdal BS,
    3. Ryu JL, et al
    . Automated critical test findings identification and online notification system using artificial intelligence in imaging. Radiology 2017;285:923–31 doi:10.1148/radiol.2017162664 pmid:28678669
    CrossRefPubMed
  13. 13.↵
    1. He K,
    2. Gkioxari G,
    3. Dollár P, et al
    . Mask R-CNN. arXiv:1703.06870. 2017. In: Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy. October 22–29, 2017
  14. 14.↵
    1. Lin TY,
    2. Dollár P,
    3. Girshick R, et al
    . Feature pyramid networks for object detection. arXiv:1612.03144. 2017. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Hawaii. July 21–27, 2017
  15. 15.↵
    1. He K,
    2. Zhang X,
    3. Ren S, et al
    . Deep residual learning for image recognition. arXiv:1512.03385. 2016. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vagas, Nevada. June 27–30, 2016
  16. 16.↵
    1. Ren S,
    2. He K,
    3. Girshick R, et al
    . Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 2017;39:1137–49 doi:10.1109/TPAMI.2016.2577031 pmid:27295650
    CrossRefPubMed
  17. 17.↵
    1. He K,
    2. Zhang X,
    3. Ren S, et al
    . Delving deep into rectifiers: surpassing human-level performance on imagenet classification. arXiv:1502.01852. 2015. In: Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile. December 7–13, 2015:1026–34
  18. 18.↵
    1. Kingma DP,
    2. Adam Ba J
    . A method for stochastic optimization. arXiv:1412.6980. 2015. In: Proceedings of the International Conference for Learning Representations, San Diego, California. May 7–9, 2015
  19. 19.↵
    1. Abadi M,
    2. Agarwal A,
    3. Barham P, et al
    . Tensorflow: large-scale machine learning on heterogeneous distributed systems. http://download.tensorflow.org/paper/whitepaper2015.pdf. Accessed March 25, 2018.
  20. 20.↵
    1. Yuh EL,
    2. Gean AD,
    3. Manley GT, et al
    . Computer-aided assessment of head computed tomography (CT) studies in patients with suspected traumatic brain injury. J Neurotrauma 2008;25:1163–72 doi:10.1089/neu.2008.0590 pmid:18986221
    CrossRefPubMed
  21. 21.↵
    1. Keravnou E,
    2. Garbay C,
    3. Baud R, et al.
    1. Cósić D,
    2. Lončarić S
    . Rule-based labeling of CT head image. In: Keravnou E, Garbay C, Baud R, et al., eds. Artificial Intelligence in Medicine: 6th Conference on Artificial Intelligence in Medicine Europe, AIME'97 Grenoble, France, March 23–26, 1997 Proceedings. Berlin: Springer-Verlag;1997:453–56
  22. 22.↵
    1. Li YH,
    2. Zhang L,
    3. Hu QM, et al
    . Automatic subarachnoid space segmentation and hemorrhage detection in clinical head CT scans. Int J Comput Assist Radiol Surg 2012;7:507–16 doi:10.1007/s11548-011-0664-3 pmid:22081264
    CrossRefPubMed
  23. 23.↵
    1. Prakash KN,
    2. Zhou S,
    3. Morgan TC, et al
    . Segmentation and quantification of intra-ventricular/cerebral hemorrhage in CT scans by modified distance regularized level set evolution technique. Int J Comput Assist Radiol Surg 2012;7:785–98 doi:10.1007/s11548-012-0670-0 pmid:22293946
    CrossRefPubMed
  24. 24.↵
    1. Rajapakse JC,
    2. Schmidt B,
    3. Volkert G
    1. Gong T,
    2. Liu R,
    3. Tan CL, et al
    . Classification of CT brain images of head trauma. In: Rajapakse JC, Schmidt B, Volkert G, eds. Pattern Recognition in Bioinformatics: Second IAPR International Workshop, PRIB 2007, Singapore, October 1–2, 2007 Proceedings. Berlin: Springer-Verlag; 2007:401–08
  25. 25.↵
    1. Shen W,
    2. Zhou M,
    3. Yang F, et al
    . Multi-scale convolutional neural networks for lung nodule classification. Inf Process Med Imaging 2015;24:588–99 pmid:26221705
    PubMed
  26. 26.↵
    1. Wang J,
    2. Ding H,
    3. Bidgoli FA, et al
    . Detecting cardiovascular disease from mammograms with deep learning. IEEE Trans Med Imaging 2017;36:1172–81 doi:10.1109/TMI.2017.2655486 pmid:28113340
    CrossRefPubMed
  27. 27.↵
    1. Wang J,
    2. Fang Z,
    3. Lang N, et al
    . A multi-resolution approach for spinal metastasis detection using deep Siamese neural networks. Comput Biol Med 2017;84:137–46 doi:10.1016/j.compbiomed.2017.03.024 pmid:28364643
    CrossRefPubMed
  28. 28.↵
    1. Phong TD,
    2. Duong HN,
    3. Nguyen HT, et al
    . Brain hemorrhage diagnosis by using deep learning. In: Proceedings of the International Conference on Machine Learning and Soft Computing, Ho Chi Minh City, Vietnam. January 13–16, 2017:34–39
  29. 29.↵
    1. Simonyan K,
    2. Vedaldi A,
    3. Zisserman A
    . Deep inside convolutional networks: visualising image classification models and saliency maps. https://arxiv.org/abs/1312.6034. Accessed March 25, 2018.
  30. 30.↵
    1. Selvaraju RR,
    2. Das A,
    3. Vedantam R, et al
    . Grad-CAM: why did you say that? visual explanations from deep networks via gradient-based localization. https://www.researchgate.net/publication/308964930_GradCAM_Why_did_you_say_that_Visual_Explanations_from_Deep_Networks_via_Gradient-based_Localization. Accessed March 25, 2018.
  31. 31.↵
    1. Nataraj S
    . 2013 Imaging Turnaround Times Survey Results. 2014. https://www.advisory.com/research/imaging-performance-partnership/expert-insights/2014/2013-turnaround-times-survey-results. Accessed March 25, 2018.
  32. 32.↵
    1. Anderson CS,
    2. Heeley E,
    3. Huang Y, et al
    ; INTERACT2 Investigators. Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med 2013;368:2355–65 doi:10.1056/NEJMoa1214609 pmid:23713578
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Jung SW,
    2. Lee CY,
    3. Yim MB
    . The relationship between subarachnoid hemorrhage volume and development of cerebral vasospasm. J Cerebrovasc Endovasc Neurosurg 2012;14:186–91 doi:10.7461/jcen.2012.14.3.186 pmid:23210046
    CrossRefPubMed
  34. 34.↵
    1. Bullock MR,
    2. Chesnut R,
    3. Ghajar J, et al
    ; Surgical Management of Traumatic Brain Injury Author Group. Surgical management of acute epidural hematomas. Neurosurgery 2006;58:S7–S15; discussion Si-iv pmid:16710967
    PubMed
  35. 35.↵
    1. Kwak R,
    2. Kadoya S,
    3. Suzuki T
    . Factors affecting the prognosis in thalamic hemorrhage. Stroke 1983;14:493–500 doi:10.1161/01.STR.14.4.493 pmid:6606870
    Abstract/FREE Full Text
  36. 36.↵
    1. Goodfellow IJ,
    2. Shlens J,
    3. Szegedy C
    . Explaining and harnessing adversarial examples. In: Proceedings of the International Conference for Learning Representations, San Diego, California. May 7–9, 2015
  37. 37.↵
    1. Gu S,
    2. Rigazio L
    . Towards deep neural network architectures robust to adversarial examples. https://arxiv.org/abs/1412.5068. Accessed March 25, 2018.
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 39 (9)
American Journal of Neuroradiology
Vol. 39, Issue 9
1 Sep 2018
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Hybrid 3D/2D Convolutional Neural Network for Hemorrhage Evaluation on Head CT
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
P.D. Chang, E. Kuoy, J. Grinband, B.D. Weinberg, M. Thompson, R. Homo, J. Chen, H. Abcede, M. Shafie, L. Sugrue, C.G. Filippi, M.-Y. Su, W. Yu, C. Hess, D. Chow
Hybrid 3D/2D Convolutional Neural Network for Hemorrhage Evaluation on Head CT
American Journal of Neuroradiology Sep 2018, 39 (9) 1609-1616; DOI: 10.3174/ajnr.A5742

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Hybrid 3D/2D Convolutional Neural Network for Hemorrhage Evaluation on Head CT
P.D. Chang, E. Kuoy, J. Grinband, B.D. Weinberg, M. Thompson, R. Homo, J. Chen, H. Abcede, M. Shafie, L. Sugrue, C.G. Filippi, M.-Y. Su, W. Yu, C. Hess, D. Chow
American Journal of Neuroradiology Sep 2018, 39 (9) 1609-1616; DOI: 10.3174/ajnr.A5742
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Deep Learning-Based ASPECTS Algorithm Enhances Reader Performance and Reduces Interpretation Time
  • Application of deep learning models for detection of subdural hematoma: a systematic review and meta-analysis
  • Predicting vasospasm risk using first presentation aneurysmal subarachnoid haemorrhage volume: a semi-automated CT image segmentation analysis in ITK-SNAP
  • Labeling Noncontrast Head CT Reports for Common Findings Using Natural Language Processing
  • Artificial Intelligence Assessment of Renal Scarring (AIRS Study)
  • Review of deep learning algorithms for the automatic detection of intracranial hemorrhages on computed tomography head imaging
  • Automated Cerebral Hemorrhage Detection Using RAPID
  • Artificial Intelligence and Acute Stroke Imaging
  • 3D Deep Neural Network Segmentation of Intracerebral Hemorrhage: Development and Validation for Clinical Trials
  • Artificial Intelligence in Neuroradiology: Current Status and Future Directions
  • Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning
  • Convolutional Neural Network for Automated FLAIR Lesion Segmentation on Clinical Brain MR Imaging
  • Towards Reproducible Results: Validating CT Hemorrhage-Detection Algorithms on Standard Datasets
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire