Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleARTIFICIAL INTELLIGENCE
Open Access

A Radiomic “Warning-Sign” of Progression on Brain MRI in Individuals with MS

Brendan S. Kelly, Prateek Mathur, Gerard McGuinness, Henry Dillon, Edward H. Lee, Kristen W. Yeom, Aonghus Lawlor and Ronan P. Killeen
American Journal of Neuroradiology January 2024, DOI: https://doi.org/10.3174/ajnr.A8104
Brendan S. Kelly
aFrom the Department of Radiology (B.S.K., G.M., H.D., R.P.K.), St. Vincent’s University Hospital, Dublin, Ireland
bInsight Centre for Data Analytics (B.S.K., P.M., A.L.), University College Dublin, Dublin, Ireland
cWellcome Trust and Health Research Board (B.S.K.), Irish Clinical Academic Training, Dublin, Ireland
dSchool of Medicine (B.S.K.), University College Dublin, Dublin, Ireland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Brendan S. Kelly
Prateek Mathur
bInsight Centre for Data Analytics (B.S.K., P.M., A.L.), University College Dublin, Dublin, Ireland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gerard McGuinness
aFrom the Department of Radiology (B.S.K., G.M., H.D., R.P.K.), St. Vincent’s University Hospital, Dublin, Ireland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Henry Dillon
aFrom the Department of Radiology (B.S.K., G.M., H.D., R.P.K.), St. Vincent’s University Hospital, Dublin, Ireland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Edward H. Lee
eLucille Packard Children’s Hospital at Stanford (E.H.L., K.W.Y.), Stanford, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Edward H. Lee
Kristen W. Yeom
eLucille Packard Children’s Hospital at Stanford (E.H.L., K.W.Y.), Stanford, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kristen W. Yeom
Aonghus Lawlor
bInsight Centre for Data Analytics (B.S.K., P.M., A.L.), University College Dublin, Dublin, Ireland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ronan P. Killeen
aFrom the Department of Radiology (B.S.K., G.M., H.D., R.P.K.), St. Vincent’s University Hospital, Dublin, Ireland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. McNamara C,
    2. Sugrue G,
    3. Murray B, et al
    . Current and emerging therapies in multiple sclerosis: implications for the radiologist, Part 1: mechanisms, efficacy, and safety. AJNR Am J Neuroradiol 2017;38:1664–71 doi:10.3174/ajnr.A5147 pmid:28408630
    Abstract/FREE Full Text
  2. 2.↵
    1. McNamara C,
    2. Sugrue G,
    3. Murray B, et al
    . Current and emerging therapies in multiple sclerosis: implications for the radiologist, Part 2: surveillance for treatment complications and disease progression. AJNR Am J Neuroradiol 2017;38:1672–80 doi:10.3174/ajnr.A5148 pmid:28428206
    Abstract/FREE Full Text
  3. 3.↵
    1. Commowick O,
    2. Cervenansky F,
    3. Cotton F, et al
    . MSSEG-2 challenge proceedings: multiple sclerosis new lesions segmentation challenge using a data management and processing infrastructure. In: International Conference on Medical Image Computing and Computer Assisted Intervention. September 27 to October 1, 2021; Virtual
  4. 4.↵
    1. Yang J,
    2. Hamade M,
    3. Wu Q, et al
    . Current and future biomarkers in multiple sclerosis. Int J Mol Sci 2022;23:5877 doi:10.3390/ijms23115877 pmid:35682558
    CrossRefPubMed
  5. 5.↵
    1. Martin D,
    2. Tong E,
    3. Kelly B, et al
    . Current perspectives of artificial intelligence in pediatric neuroradiology: an overview. Front Radiol 2021;1:713681 doi:10.3389/fradi.2021.713681 pmid:37492174
    CrossRefPubMed
  6. 6.↵
    1. Kelly BS,
    2. Judge C,
    3. Bollard SM, et al
    . Radiology artificial intelligence: a systematic review and evaluation of methods (RAISE). Eur Radiol 2022;32:8054 doi:10.1007/s00330-022-08784-6 pmid:35593961
    CrossRefPubMed
  7. 7.↵
    1. Diaz-Hurtado M,
    2. Martínez-Heras E,
    3. Solana E, et al
    . Recent advances in the longitudinal segmentation of multiple sclerosis lesions on magnetic resonance imaging: a review. Neuroradiology 2022;64:2103–17 doi:10.1007/s00234-022-03019-3 pmid:35864180
    CrossRefPubMed
  8. 8.↵
    1. Lladó X,
    2. Ganiler O,
    3. Oliver A, et al
    . Automated detection of multiple sclerosis lesions in serial brain MRI. Neuroradiology 2012;54:787–807 doi:10.1007/s00234-011-0992-6 pmid:22179659
    CrossRefPubMed
  9. 9.↵
    1. Filippi M,
    2. Preziosa P,
    3. Arnold DL, et al
    . Present and future of the diagnostic work-up of multiple sclerosis: the imaging perspective. J Neurol 2023;270:1286–99 doi:10.1007/s00415-022-11488-y pmid:36427168
    CrossRefPubMed
  10. 10.↵
    1. Havas J,
    2. Leray E,
    3. Rollot F, et al
    . Predictive medicine in multiple sclerosis: a systematic review. Mult Scler Relat Disord 2020;40:101928 doi:10.1016/j.msard.2020.101928 pmid:32004856
    CrossRefPubMed
  11. 11.↵
    1. Lorefice L,
    2. Pitzalis M,
    3. Murgia F, et al
    . Omics approaches to understanding the efficacy and safety of disease-modifying treatments in multiple sclerosis. Front Genet 2023;14:1076421 doi:10.3389/fgene.2023.1076421 pmid:36793897
    CrossRefPubMed
  12. 12.↵
    1. Brummer T,
    2. Muthuraman M,
    3. Steffen F, et al
    . Improved prediction of early cognitive impairment in multiple sclerosis combining blood and imaging biomarkers. Brain Commun 2022;4:fcac153 doi:10.1093/braincomms/fcac153 pmid:35813883
    CrossRefPubMed
  13. 13.↵
    1. Storelli L,
    2. Azzimonti M,
    3. Gueye M, et al
    . A deep learning approach to predicting disease progression in multiple sclerosis using magnetic resonance imaging. Invest Radiol 2022;57:423–32 doi:10.1097/RLI.0000000000000854 pmid:35093968
    CrossRefPubMed
  14. 14.↵
    1. Santos DP,
    2. dos Dietzel M,
    3. Baessler B
    . A decade of radiomics research: are images really data or just patterns in the noise? Eur Radiol 2021;31:1–4 doi:10.1007/s00330-020-07108-w pmid:32767103
    CrossRefPubMed
  15. 15.↵
    1. Huang EP,
    2. O'Connor JP,
    3. McShane LM, et al
    . Criteria for the translation of radiomics into clinically useful tests. Nat Rev Clin Oncol 2023;20:69–82 doi:10.1038/s41571-022-00707-0 pmid:36443594
    CrossRefPubMed
  16. 16.↵
    1. Liu Y,
    2. Dong D,
    3. Zhang L, et al
    . Radiomics in multiple sclerosis and neuromyelitis optica spectrum disorder. Eur Radiol 2019;29:4670–77 doi:10.1007/s00330-019-06026-w pmid:30770971
    CrossRefPubMed
  17. 17.↵
    1. Peng Y,
    2. Zheng Y,
    3. Tan Z, et al
    . Prediction of unenhanced lesion evolution in multiple sclerosis using radiomics-based models: a machine learning approach. Mult Scler Relat Disord 2021;53:102989 doi:10.1016/j.msard.2021.102989 pmid:34052741
    CrossRefPubMed
  18. 18.↵
    1. Luo X,
    2. Piao S,
    3. Li H, et al
    . Multi-lesion radiomics model for discrimination of relapsing-remitting multiple sclerosis and neuropsychiatric systemic lupus erythematosus. Eur Radiol 2022;32:5700–10 doi:10.1007/s00330-022-08653-2 pmid:35243524
    CrossRefPubMed
  19. 19.↵
    1. Pontillo G,
    2. Tommasin S,
    3. Cuocolo R, et al
    . A combined radiomics and machine learning approach to overcome the clinicoradiologic paradox in multiple sclerosis. AJNR Am J Neuroradiol 2021;42:1927–33 doi:10.3174/ajnr.A7274 pmid:34531195
    Abstract/FREE Full Text
  20. 20.↵
    1. Rajpurkar P,
    2. Lungren MP
    . The current and future state of AI interpretation of medical images. N Engl J Med 2023;388:1981–90 doi:10.1056/NEJMra2301725 pmid:37224199
    CrossRefPubMed
  21. 21.↵
    1. Acosta JN,
    2. Falcone GJ,
    3. Rajpurkar P
    . The need for medical artificial intelligence that incorporates prior images. Radiology 2022;304:283–88 doi:10.1148/radiol.212830 pmid:35438563
    CrossRefPubMed
  22. 22.↵
    1. Sushentsev N,
    2. Rundo L,
    3. Abrego L, et al
    . Time series radiomics for the prediction of prostate cancer progression in patients on active surveillance. Eur Radiol 2023;33:3792–800 doi:10.1007/s00330-023-09438-x pmid:36749370
    CrossRefPubMed
  23. 23.↵
    1. Kelly BS,
    2. Mathur P,
    3. Plesniar J, et al
    . Using deep learning–derived image features in radiologic time series to make personalised predictions: proof of concept in colonic transit data. Eur Radiol 2023;33:8376–86 doi:10.1007/s00330-023-09769-9 pmid:37284869
    CrossRefPubMed
  24. 24.↵
    1. Moskowitz CS,
    2. Welch ML,
    3. Jacobs MA, et al
    . Radiomic analysis: study design, statistical analysis, and other bias mitigation strategies. Radiology 2022;304:265–73 doi:10.1148/radiol.211597 pmid:35579522
    CrossRefPubMed
  25. 25.↵
    1. Kocak B,
    2. Baessler B,
    3. Bakas S, et al
    . CheckList for EvaluAtion of Radiomics research (CLEAR): a step-by-step reporting guideline for authors and reviewers endorsed by ESR and EuSoMII. Insights Imaging 2023;14:75 doi:10.1186/s13244-023-01415-8 pmid:37142815
    CrossRefPubMed
  26. 26.↵
    1. Kelly B,
    2. Kirwan A,
    3. Quinn M, et al
    . The ethical matrix as a method for involving people living with disease and the wider public (PPI) in near-term artificial intelligence research. Radiography (Lond) 2023;29(Suppl 1):S103–11 doi:10.1016/j.radi.2023.03.009 pmid:37062673
    CrossRefPubMed
  27. 27.↵
    1. Mongan J,
    2. Moy L,
    3. Kahn CE
    . Checklist for Artificial Intelligence in Medical Imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell 2020;2:e200029 doi:10.1148/ryai.2020200029 pmid:33937821
    CrossRefPubMed
  28. 28.↵
    1. Kocak B,
    2. Chepelev LL,
    3. Chu LC, et al
    . Assessment of RadiomIcS rEsearch (ARISE): a brief guide for authors, reviewers, and readers from the Scientific Editorial Board of European Radiology. Eur Radiol 2023;33:7556–60 doi:10.1007/s00330-023-09768-w pmid:37358612
    CrossRefPubMed
  29. 29.↵
    1. Pham N,
    2. Hill V,
    3. Rauschecker A, et al
    . Critical appraisal of artificial intelligence–enabled imaging tools using the levels of evidence system. AJNR Am J Neuroradiol 2023;44:E21–28 doi:10.3174/ajnr.A7850 pmid:37080722
    Abstract/FREE Full Text
  30. 30.↵
    1. Jenkinson M,
    2. Beckmann CF,
    3. Behrens TEJ, et al
    . FSL. Neuroimage 2012;62:782–90 doi:10.1016/j.neuroimage.2011.09.015 pmid:21979382
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Kamnitsas K,
    2. Ferrante E,
    3. Parisot S, et al
    . Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. In: Second International Workshop, BrainLes 2016, with the Challenges on BRATS, ISLES and mTOP 2016, Held in Conjunction with MICCAI 2016. Athens, Greece. October 17, 2016
  32. 32.↵
    1. Yushkevich PA,
    2. Gao Y,
    3. Gerig G, et al
    . ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images. Annu Int Conf IEEE Eng Med Biol Soc 2016;2016:3342–45 doi:10.1109/EMBC.2016.7591443 pmid:28269019
    CrossRefPubMed
  33. 33.↵
    1. Rovira À,
    2. Wattjes MP,
    3. Tintoré M, et al
    ; MAGNIMS study group. MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis: clinical implementation in the diagnostic process. Nat Rev Neurol 2015;11:471–82 doi:10.1038/nrneurol.2015.106 pmid:26149978
    CrossRefPubMed
  34. 34.↵
    1. Griethuysen JJM,
    2. van Fedorov A,
    3. Parmar C, et al
    . Computational radiomics system to decode the radiographic phenotype. Cancer Res 2017;77:e104–07 doi:10.1158/0008-5472.CAN-17-0339 pmid:29092951
    CrossRefPubMed
  35. 35.↵
    1. Maier-Hein L,
    2. Reinke A,
    3. Christodoulou E, et al
    . Metrics reloaded: pitfalls and recommendations for image analysis validation. ArXiv 2023. https://arxiv.org/abs/2206.01653v1. Accessed November 1, 2023
  36. 36.↵
    1. Filippi M,
    2. Preziosa P,
    3. Rocca MA
    . Brain mapping in multiple sclerosis: lessons learned about the human brain. Neuroimage 2019;190:32–45 doi:10.1016/j.neuroimage.2017.09.021 pmid:28917696
    CrossRefPubMed
  37. 37.↵
    1. Wang L,
    2. Kelly B,
    3. Lee EH, et al
    . Multi-classifier-based identification of COVID-19 from chest computed tomography using generalizable and interpretable radiomics features. Eur J Radiol 2021;136:109552 doi:10.1016/j.ejrad.2021.109552 pmid:33497881
    CrossRefPubMed
  38. 38.↵
    1. Ardakani AA,
    2. Bureau NJ,
    3. Ciaccio EJ, et al
    . Interpretation of radiomics features: a pictorial review. Comput Methods Programs Biomed 2022;215:106609 doi:10.1016/j.cmpb.2021.106609 pmid:34990929
    CrossRefPubMed
  39. 39.↵
    1. Kelly B,
    2. Martinez M,
    3. Do H, et al
    . DEEP MOVEMENT: deep learning of movie files for management of endovascular thrombectomy. Eur Radiol 2023;33:5728–39 doi:10.1007/s00330-023-09478-3 pmid:36847835
    CrossRefPubMed
  40. 40.↵
    1. Brex PA,
    2. Ciccarelli O,
    3. O'Riordan JI, et al
    . A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N Engl J Med 2002;346:158–64 doi:10.1056/NEJMoa011341 pmid:11796849
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Todea AR,
    2. Melie‐Garcia L,
    3. Barakovic M, et al
    ; Swiss MS Cohort Study. A multicenter longitudinal MRI study assessing LeMan‐PV Software accuracy in the detection of white matter lesions in multiple sclerosis patients. J Magn Reson Imaging 2023;58:864–76 doi:10.1002/jmri.28618 pmid:36708267
    CrossRefPubMed
  42. 42.↵
    1. Yu AC,
    2. Mohajer B,
    3. Eng J
    . External validation of deep learning algorithms for radiologic diagnosis: a systematic review. Radiol Artif Intell 2022;4:e210064 doi:10.1148/ryai.210064 pmid:35652114
    CrossRefPubMed
  43. 43.↵
    1. Sica GT
    . Bias in research studies. Radiology 2006;238:780–89 doi:10.1148/radiol.2383041109 pmid:16505391
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Martí-Bonmatí L,
    2. Alberich-Bayarri Á,
    3. Ladenstein R, et al
    . PRIMAGE project: predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers. Eur Radiol Exp 2020;4:22 doi:10.1186/s41747-020-00150-9 pmid:32246291
    CrossRefPubMed
  45. 45.↵
    European Society of Radiology (ESR). Medical imaging in personalised medicine: a white paper of the research committee of the European Society of Radiology (ESR). Insights Imaging 2015;6:141–55 doi:10.1007/s13244-015-0394-0 pmid:25763994
    CrossRefPubMed
  46. 46.↵
    1. Yap MH,
    2. Goyal M,
    3. Osman F, et al
    . Breast ultrasound region of interest detection and lesion localisation. Artif Intell Med 2020;107:101880 doi:10.1016/j.artmed.2020.101880 pmid:32828439
    CrossRefPubMed
  47. 47.↵
    1. Akinci D’Antonoli T,
    2. Stanzione A,
    3. Bluethgen C, et al
    . Large language models in radiology: fundamentals, applications, ethical considerations, risks, and future directions. Diagn Interv Radiol 2023 October 3. [Epub ahead of print] doi:10.4274/dir.2023.232417 pmid:37789676
    CrossRefPubMed
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Radiomic “Warning-Sign” of Progression on Brain MRI in Individuals with MS
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Brendan S. Kelly, Prateek Mathur, Gerard McGuinness, Henry Dillon, Edward H. Lee, Kristen W. Yeom, Aonghus Lawlor, Ronan P. Killeen
A Radiomic “Warning-Sign” of Progression on Brain MRI in Individuals with MS
American Journal of Neuroradiology Jan 2024, DOI: 10.3174/ajnr.A8104

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
A Radiomic “Warning-Sign” of Progression on Brain MRI in Individuals with MS
Brendan S. Kelly, Prateek Mathur, Gerard McGuinness, Henry Dillon, Edward H. Lee, Kristen W. Yeom, Aonghus Lawlor, Ronan P. Killeen
American Journal of Neuroradiology Jan 2024, DOI: 10.3174/ajnr.A8104
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (4)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • CLEAR guideline for radiomics: Early insights into current reporting practices endorsed by EuSoMII
    Burak Kocak, Andrea Ponsiglione, Arnaldo Stanzione, Lorenzo Ugga, Michail E. Klontzas, Roberto Cannella, Renato Cuocolo
    European Journal of Radiology 2024 181
  • Radiomic Fingerprinting of the Peritumoral Edema in Brain Tumors
    Ghasem Azemi, Antonio Di Ieva
    Cancers 2025 17 3
  • Reproducibility of methodological radiomics score (METRICS): an intra- and inter-rater reliability study endorsed by EuSoMII
    Tugba Akinci D’Antonoli, Armando Ugo Cavallo, Burak Kocak, Alessandra Borgheresi, Andrea Ponsiglione, Arnaldo Stanzione, Emmanouil Koltsakis, Fabio Martino Doniselli, Federica Vernuccio, Lorenzo Ugga, Matthaios Triantafyllou, Merel Huisman, Michail E. Klontzas, Romina Trotta, Roberto Cannella, Salvatore Claudio Fanni, Renato Cuocolo
    European Radiology 2025
  • Combining radiomics and connectomics in MRI studies of the human brain: A systematic literature review
    Maria Agnese Pirozzi, Federica Franza, Marianna Chianese, Simone Papallo, Alessandro Pasquale De Rosa, Federica Di Nardo, Giuseppina Caiazzo, Fabrizio Esposito, Leandro Donisi
    Computer Methods and Programs in Biomedicine 2025 266

More in this TOC Section

  • AI-Enhanced Photon-Counting CT of Temporal Bone
  • An AI De-identification Method for Pediatric MRIs
  • Aneurysm Segmentation on MRI-TOF with AI
Show more ARTIFICIAL INTELLIGENCE

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire