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ORIGINAL RESEARCH
ARTIFICIAL INTELLIGENCE

A Radiomic “Warning-Sign” of Progression on Brain MRI in
Individuals with MS

Brendan S. Kelly, Prateek Mathur, Gerard McGuinness, Henry Dillon, Edward H. Lee, Kristen W. Yeom, Aonghus Lawlor,
and Ronan P. Killeen

ABSTRACT

BACKGROUND AND PURPOSE:MS is a chronic progressive, idiopathic, demyelinating disorder whose diagnosis is contingent on the
interpretation of MR imaging. New MR imaging lesions are an early biomarker of disease progression. We aimed to evaluate a
machine learning model based on radiomics features in predicting progression on MR imaging of the brain in individuals with MS.

MATERIALS AND METHODS: This retrospective cohort study with external validation on open-access data obtained full ethics ap-
proval. Longitudinal MR imaging data for patients with MS were collected and processed for machine learning. Radiomics features
were extracted at the future location of a new lesion in the patients’ prior MR imaging (“prelesion”). Additionally, “control” samples
were obtained from the normal-appearing white matter for each participant. Machine learning models for binary classification were
trained and tested and then evaluated the external data of the model.

RESULTS: The total number of participants was 167. Of the 147 in the training/test set, 102 were women and 45 were men. The av-
erage age was 42 (range, 21–74 years). The best-performing radiomics-based model was XGBoost, with accuracy, precision, recall,
and F1-score of 0.91, 0.91, 0.91, and 0.91 on the test set, and 0.74, 0.74, 0.74, and 0.70 on the external validation set. The 5 most im-
portant radiomics features to the XGBoost model were associated with the overall heterogeneity and low gray-level emphasis of
the segmented regions. Probability maps were produced to illustrate potential future clinical applications.

CONCLUSIONS: Our machine learning model based on radiomics features successfully differentiated prelesions from normal-
appearing white matter. This outcome suggests that radiomics features from normal-appearing white matter could serve as an
imaging biomarker for progression of MS on MR imaging.

ABBREVIATIONS: AI ¼ artificial intelligence; MSSEG2 ¼ MS SEGmentation Challenge 2; NAWM ¼ normal-appearing white matter

MS is a chronic, progressive, idiopathic, demyelinating dis-
order of the CNS.1 Diagnosis is contingent on timely and

precise application of the McDonald criteria, which rely on the
interpretation of MR imaging.2 It is unusual among many
chronic conditions in that imaging features can often predate
clinical manifestations of disease. Imaging remains a prominent
tool in the diagnosis, progress-monitoring, and evaluation of
treatment efficacy.1,2 New MS lesions are an important imaging
biomarker because they can signify both disease progression

and the efficacy of disease-modifying drugs.3 Indeed, the ab-
sence of new T2-FLAIR lesions in the CNS is used as the solitary
metric of disease-modifying drug effectiveness.4 However, the
monitoring of lesions can be a tedious or repetitive task for neu-
roradiologists,5 and that issue, compounded by supply-demand
issues in radiology,6 has prompted research into automated
lesion identification.7

Computer-assisted segmentation methodologies have been an
important topic for scientific exploration for the past 2 decades.8

More recently, a substantial increase in the incorporation of artifi-
cial intelligence (AI) into these methodologies has been observed.9

Current research trends are shifting away from the simple identifi-
cation of MS lesions on T2-FLAIR to comparing images captured
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at distinct time intervals.7 In response to this escalating interest, the
Medical Image Computing and Computer Assisted Interventions
society initiated a challenge concentrating on the detection of new
lesions (MS SEGmentation Challenge 2 [MSSEG2]), further galva-
nizing research interest in this domain.3

Predictive models in MS have also been the subject of research;
however, their methods and external generalizability vary.10 Many
of these models use “systems biology” approaches (Omics data) to
predict various disease markers and outcomes.11 Recent imaging
research into predictive modeling for MS includes applications in
cognitive decline12 and deep learning approaches to disease pro-
gression.13 Radiomics is a field of research in which higher-order
image features such as texture or intensity distribution are investi-
gated (often using AI and machine learning models to glean
deeper information from radiologic images).14,15 The methodol-
ogy is widely used in medical imaging research, including applica-
tions in MS.16-19 By transforming simple images into mineable
high-dimensional data, it allows in-depth characterization of MS
lesions. Thus, radiomics has this potential to augment diagnostic
accuracy and individualize patient management.7

While previously radiology AI research was focused on a nar-
row range-of-use cases6 aligned to the above advances, there has
been a significant increase in interest in the concept of temporal-
ity in the field.20 The interpretation of medical images is not a
static process, and recent research has shown the importance

both of incorporating prior imaging21 into the pipeline and also
considering medical images as part of a time-series and in making
predictions.22,23

In this study, we aimed to evaluate the potential of radiomics
features in predicting progression on MR imaging of the brain in
individuals with MS. In our approach, we propose using a machine
learning model and radiomics features to differentiate a “prelesion”
from a control sample in the normal-appearing white matter
(NAWM).

MATERIALS AND METHODS
This retrospective study with external validation was designed
according to both the Radiological Society of North America and
the European Society of Radiology published principles,24,25 with
patient expert involvement.26 We obtained independent statistical
advice. The article was prepared using the Checklist for Artificial
Intelligence in Medical Imaging27 and conforms to the Assessment
of RadiomIcS rEsearch (ARISE) guideline.28 It received full institu-
tional review board approval (St. Vincent’s University Hospital), and
the requirement for prospective consent was waived. This research
constitutes Level 5A evidence (data quality and AI model develop-
ment with external testing) because it represents 1 retrospective study
with internal and external data used for final performance reporting.29

Participants and Data
Consecutive patients who had at least 2 MR imaging brain studies
for MS at our institution between January 2019 and December
2022 were reviewed (Fig 1). Those with a new lesion on follow-
up imaging were included in this study. There is no overlap of
the internal cohort with prior studies. The external cohort is pub-
licly available and has been previously described.3

Images were acquired on a 1.5T system (Magnetom Avanto
syngo MR B19; Siemens). Imaging sequences included a 3D T2-
FLAIR sequence using the following parameters: acquired voxel
size, 1.1 � 1.1 � 1.1mm; TR, 6000ms; TE, 413ms; TI, 2030ms;
acquisition time, 6 minutes 44 seconds; orientation, sagittal. All
scans were defaced using the FSL Brain Extraction Tool 10
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET/UserGuide) to preserve
participant anonymity.30 All images were coregistered to the first
time point also using FSL (http://www.fmrib.ox.ac.uk/fsl).

A baseline automated segmentation of MS lesions was generated
using DeepMedic (https://github.com/deepmedic/deepmedic).31

These baseline segmentations were then manually corrected by 1 of
2 certified radiologists in their first year post-board examination
using ITK-Snap Version 3.8.0 (www.itksnap.org).32 Radiologic
progression (new or enlarging lesions) was defined according to
the Magnetic Resonance Imaging in MS (MAGNIMS) consensus
guidelines (https://www.magnims.eu/).33 Cases with progression
were initially identified from the radiologic report and confirmed
at a dedicated research re-read. In the case of enlarging lesions,
subtractions of coregistered intensity-normalized images were
used to confirm that the lesion had unequivocally enlarged. Only
the newly segmented area (ie, the area that changed) was
included. Cases with progression were first segmented and man-
ually corrected as detailed above and then additionally verified by
a third radiologist who is a subspecialist neuroradiologist with
.10 years postfellowship experience.

FIG 1. Flow chart of included patients.
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New lesion segmentations were projected backward in time to
the same location (dubbed the prelesion) on the prior MR imaging
study. This same segmentation was then randomly translated 3
times to other locations within the NAWM to produce 3 control
segmentations (Fig 2). The NAWM mask was obtained by sub-
tracting the lesion mask from the white matter mask generated by
FSL. By means of PyRadiomics (Version 3.01; https://pypi.org/
project/pyradiomics/),34 high-order image features were extracted
from the prelesion and control segmentations (Fig 3). The 3 con-
trol features were averaged to gain a fairer representation of the
NAWM. Because the shapes of the control segmentations were de-
pendent on the original lesion segmentations, shape-related radio-
mic features were excluded.

Model, Training, and Evaluation
A baseline model using just the mean in-
tensity value of the segmented regions
was first tested to ensure that there was
justification to proceed to use higher-
order features;28 control and prelesion
regions were compared on both internal
and external data.

Several machine learning models
were trained and tested (eXtreme
Gradient Boosting [XGBoost; https://
xgboost.readthedocs.io/en/stable/],
Support Vector Classifier, K Nearest
Neighbor, and logistic regression).
Hyperparameter optimization was per-
formed using a grid search. Because
the classes were balanced 50:50 in a bi-
nary prediction problem, we chose over-
all prediction accuracy as our primary
evaluation metric.35 Feature importance
was extracted from the best-performing
model. This was used for feature selec-
tion and to give a level of explainability.
The optimal number of features is a
trade-off between model complexity
and performance. The number of fea-
tures that yields the best performance
across the different classification models
would be chosen as the optimal number
of features. Failure analysis was per-
formed on incorrectly classified cases.27

To demonstrate the potential clinical
usefulness of our approach,27,28 we pro-
duced a probability map using a previ-
ously unseen case. A section with a new
lesion was selected, and the image was di-
vided into patches. Radiomics features
were extracted from each patch and
passed to the best-performing model to
predict whether that patch was a prele-
sion. The absolute and relative probabil-
ities given by the model were calculated
and used in a data visualization to illus-
trate a potential future clinical application.

The code necessary to reproduce these experiments is available here
(https://github.com/insight-ucd/insightmri/tree/main/MSOmics).

RESULTS
The total number of participants in the training, test, and
external validation sets was 167 (124, 23 and 20); 1 additional
participant was randomly chosen for production of the proba-
bility map only. Failure of FSL registration and brain extrac-
tion led to the exclusion of 1 patient (Fig 1). Of the 147
participants in the training/test set, 102 were women and 45
were men. Overall, the average age was 42 years (range, 21–74
years) (Table 1). Two hundred ninety-four volumetric MR
imaging FLAIR images were used in the process of training

FIG 2. Prelesion and control masks. Expert segmentation mask at time b (tb) is projected back-
ward to time a (ta) to the location where a lesion will occur (prelesion, red) and the other random
areas in the NAWM (control, green). Note that this 2D representation is for illustrative purposes
only, and for the experiments, the random translation was in 3D.

FIG 3. Radiomics workflow in which features are extracted from the segmented regions and
passed to the machine learning models.
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and internal testing, with 40 heterogeneous FLAIR acquisi-
tions for external validation.

Results of different models for testing and validation are dis-
played in Tables 2 and 3. The preliminary model based on first-
order image metrics (mean pixel intensity) had modest perform-
ance on internal data (accuracy, precision, recall, and F1-score of
0.77, 0.76, 0.77, and 0.75). There was a statistically significant dif-
ference in the overall mean pixel intensity between the prelesion
samples and controls on internal data with a paired t test
(P, .05). However, this method did not generalize to external
data (accuracy, precision, recall, and F1-score of 0.5, 0.25, 0.5,
and 0.33), justifying the use of higher-order features.

The best-performing radiomics-based model was XGBoost,
with accuracy, precision, recall, and F1-score of 0.91, 0.91, 0.91,

and 0.91 on the test set, and 0.74, 0.74, 0.74, and 0.70 on the external
validation set. The 5 most important radiomics features (Fig 4) to
the XGBoost model were associated with the overall heterogeneity
(RunEntropy, Variance, and GrayLevelNonUniformityNormalized)
and low gray-level emphasis (LowGrayLevelEmphasis and
LongRunLowGrayLevelEmphasis) of the segmented regions.
Complete feature importance of the best-performing model is
given in the Online Supplemental Data. The Online Supplemental
Data show the performance for a model trained on only 14 fea-
tures (including only 1 feature for each 10 participants28), which
was inferior to the chosen model.

Probability maps were produced for illustrative purposes of
potential future clinical application and are shown in Fig 5A, -B.
These show the probability of a new lesion in absolute terms (A)
and relative to the overall risk (B). The relative probability is
defined in Equations 1 and 2.

P x; yð Þ ¼ P Nð Þ � NLV=WMVð Þ:1)

P(x, y) represents the general probability of a lesion at location
coordinates x, y, where P(N) represents the probability of a new
lesion anywhere. NLV represents the average new lesion volume.
WMV represents the NAWM volume.

RP �x;�yð Þ ¼ P x; yð Þ=P’ �x;�yð Þ:2)

The relative probability of a new
lesion in a specific location (�x, �y) is
represented by RP (�x, �y), where the
predicted probability of a lesion by the
model in the specific location �x, �y is
P’(�x, �y), and P(x, y) represents the
baseline probability of a lesion in any
location.

For our data; P x; yð Þ ¼ 0:5 0:02ð Þ ¼ 0:01

and RP �x;�yð Þ ¼ 0:01=P’ �x;�yð Þ:

Our sample probability map dem-
onstrated 1 true-positive and 1 false-
positive using a cutoff of relative
increased probability of a new white
matter lesion of 4 compared with back-
ground (Fig 5).

Failure analysis on external valida-
tion showed that in many instances, a
potential cause for misclassified cases
was misregistration of images rather
than the machine learning model. For
example, of the 3 false-negatives, 2 were
likely related to misregistration (Fig 6).

DISCUSSION
In this study, we have demonstrated the
potential of radiomics features in pre-
dicting progression on MR imaging of

Table 1: Patient demographics
Demographics

Total participants 147
Average age (yr) 42.19
Min 21
Max 74

Sex
Male 45
Female 102

Note:—Max indicates maximum; Min, minimum.

Table 2: Internal test cohort results
Model Precision Recall F1-Score Accuracy Best Parameters

XGBoost 0.91 0.91 0.91 0.91 {'classifier__colsample_bylevel': 0.8,
'classifier__gamma': 0,
'classifier__learning_rate': 0.2,
'classifier__max_depth': 4,
'classifier__min_child_weight': 1,
'classifier__n_estimators': 100,
'classifier__subsample': 0.5}

SVC 0.90 0.89 0.89 0.89 {'classifier__C': 10,
'classifier__kernel': 'rbf'}

Logistic
regression

0.81 0.78 0.78 0.78 {'classifier__C': 1,
'classifier__penalty': 'l1',
'classifier__solver': 'liblinear'}

KNN 0.83 0.78 0.78 0.78 {'classifier__n_neighbors': 7}
Intensity
baseline

0.76 0.77 0.75 0.77 NA

Note:—SVC indicates support vector classifier; KNN, K nearest neighbor; NA, not applicable.

Table 3: External validation cohort results
Model Precision Recall F1-Score Accuracy Best Parameters

XGBoost 0.74 0.74 0.70 0.74 {'classifier__colsample_bylevel': 0.8,
'classifier__gamma': 0,
'classifier__learning_rate': 0.2,
'classifier__max_depth': 4,
'classifier__min_child_weight': 1,
'classifier__n_estimators': 100,
'classifier__subsample': 0.5}

SVC 0.69 0.71 0.68 0.71 {'classifier__C': 10,
'classifier__kernel': 'rbf'}

Logistic
regression

0.62 0.55 0.56 0.55 {'classifier__C': 1,
'classifier__penalty': 'l1',
'classifier__solver': 'liblinear'}

KNN 0.51 0.42 0.43 0.42 {'classifier__n_neighbors': 7}
Intensity
baseline

0.25 0.50 0.33 0.50 NA

Note:—SVC indicates support vector classifier; KNN, K nearest neighbor; NA, not applicable.
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the brain in individuals with MS. We used a machine learning
model and the extracted features at the location of future progres-
sion to predict the occurrence of a new lesion.

AI is revolutionizing the field of MS imaging research, prom-
ising to improve diagnostic accuracy, reduce the time taken for
image interpretation, and facilitate personalized patient manage-
ment.7 Radiomics, the extraction of high-order features from
radiologic images using data-characterization algorithms, plays

an increasingly important role in MS research.16-19 Building on
this body of evidence and understanding that the white matter of
individuals with MS is quantifiably different from that of healthy
controls,9,36 our hypothesis was that radiomics features could
potentially reveal subtle alterations before they become visually
discernible on MR imaging. As in previous studies,37,38 interpre-
tation of the radiomics features that were most important to our
final model showed that more homogeneous and lower gray-level

FIG 4. Top 5 radiomic features identified by the top performing XGBoost model.

FIG 5. Illustrative probability maps showing the absolute (A, Upper row) and relative (B, Lower row) probability of a new lesion occurring in
each patch.
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regions were more likely to be classified as “control,” yielding a
level of intuition about model behavior and suggesting that the
model performed as expected.

Temporality or the consideration of time-based changes is
increasingly recognized as a critical component in radiology
AI research.21 It allows longitudinal analysis of imaging data,
potentially enabling the AI to capture disease progression and
treatment responses and even predict future outcomes.22,23,39

Integrating temporality into AI models enhances their
capacity to detect subtle, time-dependent changes in patient
imaging data, which may remain undetected by conventional
image analysis.23 We aimed to build on this research because
in conditions such as MS, in which the temporal evolution of
lesions is a critical aspect of disease-monitoring and manage-
ment, they could lead to earlier intervention and better patient
outcomes.40,41 The MSSEG2 was a clear recognition of the impor-
tance of temporality in research. We demonstrate generalizability
through external validation of our results on MSSEG2. While
there was a drop in performance at external validation, it was
in keeping with what was expected from the literature.42

Furthermore, the MSSEG2 data are known to be very heterogene-
ous, including several different institutions, 15 scanners, and
scanning protocols with a mix of 1.5T and 3T, meaning that
MSSEG2 was a robust test of performance.3 Diagnostic accuracy
results from MSSEG2 have been modest overall, putting our per-
formance in context. Even the best-performing published models
from the challenge demonstrate only modest accuracy for new-
lesion detection, indicating both the robust challenge represented

by the data set and the potential for improvement in the field.3

Furthermore, false-negative analysis also shows that some of the
misclassifications were technical (Fig 6).

A relative probability map was produced on an unseen case to
demonstrate a possible future clinical application. There are some
artifacts in the cortical gray matter on the right of the image and
lower-level increased probability in a band of subcortical white
matter on the right. These could be removed with anatomic filter-
ing or further thresholding, but we chose to present the map “as
is” rather than overly “tuning it.” One false-positive was seen, even
with thresholding, but this was at the site of a lesion that regressed,
so there was a change at this location, albeit in the opposite direc-
tion. Furthermore, the purpose of the map is to illustrate a poten-
tial clinical application for future work rather than it being directly
related to the research question of this study. Prospective analysis
would be needed before the relative probability map could be
implemented clinically.

Limitations
The retrospective study design limits the level of evidence.
Furthermore, because our experiments only involved those
patients with progression, there was a strong selection bias. While
this is a common issue in clinical radiology research,43 it remains
a clear limitation. The purpose of the study, to examine the
potential for radiomics markers to predict new lesion occurrence,
informed our research design; however, this purpose would need
to be addressed prospectively before any implementation. Our
sample size was modest, but having .120 pairs with change for

FIG 6. False-negative analysis (A and B, Upper row, C–E, Lower row). Two of the 3 false-negative cases in the external validation set are shown.
A and B, The new lesion map falls within the ventricle on the prior image, making a negative prediction more likely because the low gray levels
were associated with negative predictions (Fig 4). C, D, and E, The orientation of the proximal left trigeminal nerve is different so that the seg-
mentation is cast onto the normal brainstem instead.
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training compares favorably with MSSEG2,3 which comprised
only 100 pairs of patients in total, of whom one-half were stable.

Future Directions and Implications for Practice
Our findings indicate that radiomics features have the potential
to serve as an imaging biomarker for predicting radiologic pro-
gression of MS. The extracted features could be used to develop a
probability map for future lesion occurrence. This map and the
relative probabilities of progression have many potential clinical
applications. These include making personalized decisions
around the timing for follow-up imaging or even interventions.
The use of imaging biomarkers in this way is a topic of prospec-
tive evaluation in cancer imaging.44 Furthermore, stratification of
patients based on imaging biomarkers to identify individuals
suited for preventive intervention is highlighted as a key role of
medical imaging in personalized medicine by the European
Society of Radiology.45 Another possible application would be to
highlight ROIs during radiologist interpretation46 or to direct
attention47 in a lesion-detection algorithm.

CONCLUSIONS
Our machine learning model based on radiomics features suc-
cessfully differentiated prelesions from NAWM. This result sug-
gests that radiomics features from NAWM could serve as an
imaging biomarker for progression of MS onMR imaging.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.

REFERENCES
1. McNamara C, Sugrue G, Murray B, et al. Current and emerging

therapies in multiple sclerosis: implications for the radiologist,
Part 1: mechanisms, efficacy, and safety. AJNR Am J Neuroradiol
2017;38:1664–71 CrossRef Medline

2. McNamara C, Sugrue G, Murray B, et al. Current and emerging
therapies in multiple sclerosis: implications for the radiologist,
Part 2: surveillance for treatment complications and disease pro-
gression. AJNR Am J Neuroradiol 2017;38:1672–80 CrossRef Medline

3. Commowick O, Cervenansky F, Cotton F, et al. MSSEG-2 challenge
proceedings: multiple sclerosis new lesions segmentation challenge
using a data management and processing infrastructure. In:
International Conference on Medical Image Computing and Computer
Assisted Intervention. September 27 to October 1, 2021; Virtual

4. Yang J, Hamade M, Wu Q, et al. Current and future biomarkers in
multiple sclerosis. Int J Mol Sci 2022;23:5877 CrossRef Medline

5. Martin D, Tong E, Kelly B, et al. Current perspectives of artificial
intelligence in pediatric neuroradiology: an overview. Front Radiol
2021;1:713681 CrossRef Medline

6. Kelly BS, Judge C, Bollard SM, et al. Radiology artificial intelligence:
a systematic review and evaluation of methods (RAISE). Eur Radiol
2022;32:8054 CrossRef Medline

7. Diaz-Hurtado M, Martínez-Heras E, Solana E, et al. Recent advances
in the longitudinal segmentation of multiple sclerosis lesions on
magnetic resonance imaging: a review. Neuroradiology 2022;64:2103–
17 CrossRef Medline

8. Lladó X, Ganiler O, Oliver A, et al. Automated detection of multiple
sclerosis lesions in serial brain MRI. Neuroradiology 2012;54:787–
807 CrossRef Medline

9. Filippi M, Preziosa P, Arnold DL, et al. Present and future of the
diagnostic work-up of multiple sclerosis: the imaging perspective. J
Neurol 2023;270:1286–99 CrossRef Medline

10. Havas J, Leray E, Rollot F, et al. Predictive medicine in multiple scle-
rosis: a systematic review. Mult Scler Relat Disord 2020;40:101928
CrossRef Medline

11. Lorefice L, Pitzalis M, Murgia F, et al. Omics approaches to
understanding the efficacy and safety of disease-modifying
treatments in multiple sclerosis. Front Genet 2023;14:1076421
CrossRef Medline

12. Brummer T, Muthuraman M, Steffen F, et al. Improved prediction of
early cognitive impairment in multiple sclerosis combining blood and
imaging biomarkers. Brain Commun 2022;4:fcac153 CrossRef Medline

13. Storelli L, Azzimonti M, Gueye M, et al. A deep learning approach to
predicting disease progression in multiple sclerosis using magnetic
resonance imaging. Invest Radiol 2022;57:423–32 CrossRef Medline

14. Santos DP, dos Dietzel M, Baessler B. A decade of radiomics
research: are images really data or just patterns in the noise? Eur
Radiol 2021;31:1–4 CrossRef Medline

15. Huang EP, O'Connor JP, McShane LM, et al. Criteria for the transla-
tion of radiomics into clinically useful tests. Nat Rev Clin Oncol
2023;20:69–82 CrossRef Medline

16. Liu Y, Dong D, Zhang L, et al. Radiomics in multiple sclerosis and
neuromyelitis optica spectrum disorder. Eur Radiol 2019;29:4670–
77 CrossRef Medline

17. Peng Y, Zheng Y, Tan Z, et al. Prediction of unenhanced lesion evo-
lution in multiple sclerosis using radiomics-based models: a
machine learning approach. Mult Scler Relat Disord 2021;53:102989
CrossRef Medline

18. Luo X, Piao S, Li H, et al.Multi-lesion radiomics model for discrim-
ination of relapsing-remitting multiple sclerosis and neuropsychi-
atric systemic lupus erythematosus. Eur Radiol 2022;32:5700–10
CrossRef Medline

19. Pontillo G, Tommasin S, Cuocolo R, et al. A combined radiomics and
machine learning approach to overcome the clinicoradiologic para-
dox in multiple sclerosis. AJNR Am J Neuroradiol 2021;42:1927–33
CrossRef Medline

20. Rajpurkar P, Lungren MP. The current and future state of AI inter-
pretation of medical images. N Engl J Med 2023;388:1981–90 CrossRef
Medline

21. Acosta JN, Falcone GJ, Rajpurkar P. The need for medical artificial
intelligence that incorporates prior images. Radiology 2022;304:283–
88 CrossRef Medline

22. Sushentsev N, Rundo L, Abrego L, et al. Time series radiomics for
the prediction of prostate cancer progression in patients on active
surveillance. Eur Radiol 2023;33:3792–800 CrossRef Medline

23. Kelly BS, Mathur P, Plesniar J, et al.Using deep learning–derived image
features in radiologic time series to make personalised predictions:
proof of concept in colonic transit data. Eur Radiol 2023;33:8376–86
CrossRef Medline

24. Moskowitz CS, Welch ML, Jacobs MA, et al. Radiomic analysis:
study design, statistical analysis, and other bias mitigation strat-
egies. Radiology 2022;304:265–73 CrossRef Medline

25. Kocak B, Baessler B, Bakas S, et al. CheckList for EvaluAtion of
Radiomics research (CLEAR): a step-by-step reporting guideline
for authors and reviewers endorsed by ESR and EuSoMII. Insights
Imaging 2023;14:75 CrossRef Medline

26. Kelly B, Kirwan A, Quinn M, et al. The ethical matrix as a method
for involving people living with disease and the wider public (PPI)
in near-term artificial intelligence research. Radiography (Lond)
2023;29(Suppl 1):S103–11 CrossRef Medline

27. Mongan J, Moy L, Kahn CE. Checklist for Artificial Intelligence in
Medical Imaging (CLAIM): a guide for authors and reviewers.
Radiol Artif Intell 2020;2:e200029 CrossRef Medline

28. Kocak B, Chepelev LL, Chu LC, et al. Assessment of RadiomIcS
rEsearch (ARISE): a brief guide for authors, reviewers, and readers
from the Scientific Editorial Board of European Radiology. Eur
Radiol 2023;33:7556–60 CrossRef Medline

29. Pham N, Hill V, Rauschecker A, et al. Critical appraisal of artificial
intelligence–enabled imaging tools using the levels of evidence sys-
tem. AJNR Am J Neuroradiol 2023;44:E21–28 CrossRef Medline

AJNR Am J Neuroradiol �:� � 2024 www.ajnr.org 7

https://www.ajnr.org/sites/default/files/additional-assets/Disclosures/February%202024/0682.pdf
http://www.ajnr.org
http://dx.doi.org/10.3174/ajnr.A5147
https://www.ncbi.nlm.nih.gov/pubmed/28408630
http://dx.doi.org/10.3174/ajnr.A5148
https://www.ncbi.nlm.nih.gov/pubmed/28428206
http://dx.doi.org/10.3390/ijms23115877
https://www.ncbi.nlm.nih.gov/pubmed/35682558
http://dx.doi.org/10.3389/fradi.2021.713681
https://www.ncbi.nlm.nih.gov/pubmed/37492174
http://dx.doi.org/10.1007/s00330-022-08784-6
https://www.ncbi.nlm.nih.gov/pubmed/35593961
http://dx.doi.org/10.1007/s00234-022-03019-3
https://www.ncbi.nlm.nih.gov/pubmed/35864180
http://dx.doi.org/10.1007/s00234-011-0992-6
https://www.ncbi.nlm.nih.gov/pubmed/22179659
http://dx.doi.org/10.1007/s00415-022-11488-y
https://www.ncbi.nlm.nih.gov/pubmed/36427168
http://dx.doi.org/10.1016/j.msard.2020.101928
https://www.ncbi.nlm.nih.gov/pubmed/32004856
http://dx.doi.org/10.3389/fgene.2023.1076421
https://www.ncbi.nlm.nih.gov/pubmed/36793897
http://dx.doi.org/10.1093/braincomms/fcac153
https://www.ncbi.nlm.nih.gov/pubmed/35813883
http://dx.doi.org/10.1097/RLI.0000000000000854
https://www.ncbi.nlm.nih.gov/pubmed/35093968
http://dx.doi.org/10.1007/s00330-020-07108-w
https://www.ncbi.nlm.nih.gov/pubmed/32767103
http://dx.doi.org/10.1038/s41571-022-00707-0
https://www.ncbi.nlm.nih.gov/pubmed/36443594
http://dx.doi.org/10.1007/s00330-019-06026-w
https://www.ncbi.nlm.nih.gov/pubmed/30770971
http://dx.doi.org/10.1016/j.msard.2021.102989
https://www.ncbi.nlm.nih.gov/pubmed/34052741
http://dx.doi.org/10.1007/s00330-022-08653-2
https://www.ncbi.nlm.nih.gov/pubmed/35243524
http://dx.doi.org/10.3174/ajnr.A7274
https://www.ncbi.nlm.nih.gov/pubmed/34531195
http://dx.doi.org/10.1056/NEJMra2301725
https://www.ncbi.nlm.nih.gov/pubmed/37224199
http://dx.doi.org/10.1148/radiol.212830
https://www.ncbi.nlm.nih.gov/pubmed/35438563
http://dx.doi.org/10.1007/s00330-023-09438-x
https://www.ncbi.nlm.nih.gov/pubmed/36749370
http://dx.doi.org/10.1007/s00330-023-09769-9
https://www.ncbi.nlm.nih.gov/pubmed/37284869
http://dx.doi.org/10.1148/radiol.211597
https://www.ncbi.nlm.nih.gov/pubmed/35579522
http://dx.doi.org/10.1186/s13244-023-01415-8
https://www.ncbi.nlm.nih.gov/pubmed/37142815
http://dx.doi.org/10.1016/j.radi.2023.03.009
https://www.ncbi.nlm.nih.gov/pubmed/37062673
http://dx.doi.org/10.1148/ryai.2020200029
https://www.ncbi.nlm.nih.gov/pubmed/33937821
http://dx.doi.org/10.1007/s00330-023-09768-w
https://www.ncbi.nlm.nih.gov/pubmed/37358612
http://dx.doi.org/10.3174/ajnr.A7850
https://www.ncbi.nlm.nih.gov/pubmed/37080722


30. Jenkinson M, Beckmann CF, Behrens TEJ, et al. FSL. Neuroimage
2012;62:782–90 CrossRef Medline

31. Kamnitsas K, Ferrante E, Parisot S, et al. Brainlesion: glioma, multi-
ple sclerosis, stroke and traumatic brain injuries. In: Second
International Workshop, BrainLes 2016, with the Challenges on
BRATS, ISLES and mTOP 2016, Held in Conjunction with MICCAI
2016. Athens, Greece. October 17, 2016

32. Yushkevich PA, Gao Y, Gerig G, et al. ITK-SNAP: an interactive
tool for semi-automatic segmentation of multi-modality biomedi-
cal images. Annu Int Conf IEEE Eng Med Biol Soc 2016;2016:3342–45
CrossRef Medline

33. Rovira À, Wattjes MP, Tintoré M, et al; MAGNIMS study group.
MAGNIMS consensus guidelines on the use of MRI in multiple
sclerosis: clinical implementation in the diagnostic process. Nat
Rev Neurol 2015;11:471–82 CrossRef Medline

34. Griethuysen JJM, van Fedorov A, Parmar C, et al. Computational
radiomics system to decode the radiographic phenotype. Cancer
Res 2017;77:e104–07 CrossRef Medline

35. Maier-Hein L, Reinke A, Christodoulou E, et al. Metrics reloaded: pit-
falls and recommendations for image analysis validation. ArXiv 2023.
https://arxiv.org/abs/2206.01653v1. Accessed November 1, 2023

36. Filippi M, Preziosa P, Rocca MA. Brain mapping in multiple sclerosis:
lessons learned about the human brain. Neuroimage 2019;190:32–45
CrossRef Medline

37. Wang L, Kelly B, Lee EH, et al. Multi-classifier-based identification
of COVID-19 from chest computed tomography using generalizable
and interpretable radiomics features. Eur J Radiol 2021;136:109552
CrossRef Medline

38. Ardakani AA, Bureau NJ, Ciaccio EJ, et al. Interpretation of radio-
mics features: a pictorial review. Comput Methods Programs Biomed
2022;215:106609 CrossRef Medline

39. Kelly B, Martinez M, Do H, et al. DEEP MOVEMENT: deep learn-
ing of movie files for management of endovascular thrombectomy.
Eur Radiol 2023;33:5728–39 CrossRef Medline

40. Brex PA, Ciccarelli O, O'Riordan JI, et al. A longitudinal study of
abnormalities on MRI and disability from multiple sclerosis. N
Engl J Med 2002;346:158–64 CrossRef Medline

41. Todea AR, Melie-Garcia L, Barakovic M, et al; Swiss MS Cohort
Study. A multicenter longitudinal MRI study assessing LeMan-
PV Software accuracy in the detection of white matter lesions in
multiple sclerosis patients. J Magn Reson Imaging 2023;58:864–76
CrossRef Medline

42. Yu AC, Mohajer B, Eng J. External validation of deep learning algo-
rithms for radiologic diagnosis: a systematic review. Radiol Artif
Intell 2022;4:e210064 CrossRef Medline

43. Sica GT. Bias in research studies. Radiology 2006;238:780–89 CrossRef
Medline

44. Martí-Bonmatí L, Alberich-Bayarri Á, Ladenstein R, et al. PRIMAGE
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