Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates


Improved Turnaround Times | Median time to first decision: 12 days

Research ArticleAdult Brain
Open Access

Development and Validation of a Deep Learning–Based Model to Distinguish Glioblastoma from Solitary Brain Metastasis Using Conventional MR Images

I. Shin, H. Kim, S.S. Ahn, B. Sohn, S. Bae, J.E. Park, H.S. Kim and S.-K. Lee
American Journal of Neuroradiology March 2021, DOI: https://doi.org/10.3174/ajnr.A7003
I. Shin
aFrom the Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science (I.S., H.K., S.S.A., B.S., S.-K.L.), Yonsei University College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for I. Shin
H. Kim
aFrom the Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science (I.S., H.K., S.S.A., B.S., S.-K.L.), Yonsei University College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H. Kim
S.S. Ahn
aFrom the Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science (I.S., H.K., S.S.A., B.S., S.-K.L.), Yonsei University College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.S. Ahn
B. Sohn
aFrom the Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science (I.S., H.K., S.S.A., B.S., S.-K.L.), Yonsei University College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Sohn
S. Bae
bDepartment of Radiology (S.B.), National Health Insurance Corporation Ilsan Hospital, Goyang, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Bae
J.E. Park
cDepartment of Radiology and Research Institute of Radiology (J.E.P., H.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.E. Park
H.S. Kim
cDepartment of Radiology and Research Institute of Radiology (J.E.P., H.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H.S. Kim
S.-K. Lee
aFrom the Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science (I.S., H.K., S.S.A., B.S., S.-K.L.), Yonsei University College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.-K. Lee
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Lemke DM
    . Epidemiology, diagnosis, and treatment of patients with metastatic cancer and high-grade gliomas of the central nervous system. J Infus Nurs 2004;27(4):263–9 doi:10.1097/00129804-200407000-00012
    CrossRefPubMed
  2. 2.↵
    1. Schiff D
    . Single brain metastasis. Curr Treat Options Neurol 2001;3:89–99 doi:10.1007/s11940-001-0027-4 pmid:11123862
    CrossRefPubMed
  3. 3.↵
    1. Villano JL,
    2. Durbin EB,
    3. Normandeau C, et al
    . Incidence of brain metastasis at initial presentation of lung cancer. Neuro Oncol 2015;17:122–28 doi:10.1093/neuonc/nou099 pmid:24891450
    CrossRefPubMed
  4. 4.↵
    1. Baris MM,
    2. Celik AO,
    3. Gezer NS, et al
    . Role of mass effect, tumor volume and peritumoral edema volume in the differential diagnosis of primary brain tumor and metastasis. Clin Neurol Neurosurg 2016;148:67–71 doi:10.1016/j.clineuro.2016.07.008 pmid:27428485
    CrossRefPubMed
  5. 5.↵
    1. Wesseling P,
    2. Ruiter DJ,
    3. Burger PC
    . Angiogenesis in brain tumors; pathobiological and clinical aspects. J Neurooncol 1997;32:253–65 doi:10.1023/a:1005746320099 pmid:9049887
    CrossRefPubMed
  6. 6.↵
    1. Long DM
    . Capillary ultrastructure in human metastatic brain tumors. J Neurosurg 1979;51:53–58 doi:10.3171/jns.1979.51.1.0053 pmid:448419
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Cha S,
    2. Lupo JM,
    3. Chen MH, et al
    . Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 2007;28:1078–84 doi:10.3174/ajnr.A0484
    Abstract/FREE Full Text
  8. 8.↵
    1. Skogen K,
    2. Schulz A,
    3. Helseth E, et al
    . Texture analysis on diffusion tensor imaging: discriminating glioblastoma from single brain metastasis. Acta Radiol 2019;60:356–66 doi:10.1177/0284185118780889 pmid:29860889
    CrossRefPubMed
  9. 9.↵
    1. Sunwoo L,
    2. Yun TJ,
    3. You SH, et al
    . Differentiation of glioblastoma from brain metastasis: qualitative and quantitative analysis using arterial spin labeling MR imaging. PLoS One 2016;11:e0166662 doi:10.1371/journal.pone.0166662 pmid:27861605
    CrossRefPubMed
  10. 10.↵
    1. Law M,
    2. Cha S,
    3. Knopp EA, et al
    . High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 2002;222:715–21 doi:10.1148/radiol.2223010558 pmid:11867790
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Chaddad A
    . Automated feature extraction in brain tumor by magnetic resonance imaging using Gaussian mixture models. Int J Biomed Imaging 2015;2015:1–11 doi:10.1155/2015/868031
    CrossRef
  12. 12.↵
    1. Chaddad A,
    2. Colen R
    . Statistical feature selection for enhanced detection of brain tumor. Proc SPIE 2014;XXXVII:92170V doi:10.1117/12.2062143
    CrossRef
  13. 13.↵
    1. Chartrand G,
    2. Cheng PM,
    3. Vorontsov E, et al
    . Deep learning: a primer for radiologists. Radiographics 2017;37:2113–31 doi:10.1148/rg.2017170077 pmid:29131760
    CrossRefPubMed
  14. 14.↵
    1. Lotan E,
    2. Jain R,
    3. Razavian N, et al
    . State of the art: machine learning applications in glioma imaging. AJR Am J Roentgenol 2019;212:26–37 doi:10.2214/AJR.18.20218 pmid:30332296
    CrossRefPubMed
  15. 15.↵
    1. Chang P,
    2. Grinband J,
    3. Weinberg BD, et al
    . Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR Am J Neuroradiol 2018;39:1201–07 doi:10.3174/ajnr.A5667
    Abstract/FREE Full Text
  16. 16.↵
    1. Lao J,
    2. Chen Y,
    3. Li ZC, et al
    . A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep 2017;7:10353 doi:10.1038/s41598-017-10649-8
    CrossRefPubMed
  17. 17.↵
    1. He K,
    2. Zhang X,
    3. Ren S, et al
    . Deep residual learning for image recognition. arXiv 2016;1512.03385
  18. 18.↵
    1. Kingma DP,
    2. Ba J
    . Adam: a method for stochastic optimization. arXiv 2014;1412.6980
  19. 19.↵
    1. Ioffe S,
    2. Szegedy C
    . Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv 2015;1502.03167
  20. 20.↵
    1. Lee MH,
    2. Kim J,
    3. Kim S-T, et al
    . Prediction of IDH1 mutation status in glioblastoma using machine learning technique based on quantitative radiomic data. World Neurosurg 2019;125:e688–e96 doi:10.1016/j.wneu.2019.01.157 pmid:30735871
    CrossRefPubMed
  21. 21.↵
    1. Yamashita K,
    2. Hiwatashi A,
    3. Togao O, et al
    . MR imaging–based analysis of glioblastoma multiforme: estimation of IDH1 mutation status. AJNR Am J Neuroradiol 2016;37:58–65 doi:10.3174/ajnr.A4491 pmid:26405082
    Abstract/FREE Full Text
  22. 22.↵
    1. Talo M,
    2. Yildirim O,
    3. Baloglu UB, et al
    . Convolutional neural networks for multi-class brain disease detection using MRI images. Comput Med Imaging Graph 2019;78:101673 doi:10.1016/j.compmedimag.2019.101673
    CrossRef
  23. 23.↵
    1. Korolev S,
    2. Safiullin A,
    3. Belyaev M, et al
    . Residual and plain convolutional neural networks for 3D brain MRI classification. arXiv 2017;1701.06643 doi:10.1109/ISBI.2017.7950647
    CrossRef
  24. 24.↵
    1. Ardakani AA,
    2. Kanafi AR,
    3. Acharya UR, et al
    . Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: results of 10 convolutional neural networks. Comput Biol Med 2020;121:103795 doi:10.1016/j.compbiomed.2020.103795 pmid:32568676
    CrossRefPubMed
  25. 25.↵
    1. Bressem KK,
    2. Adams LC,
    3. Erxleben C, et al
    . Comparing different deep learning architectures for classification of chest radiographs. Sci Rep 2020;10:13590 doi:10.1038/s41598-020-70479-z pmid:32788602
    CrossRefPubMed
  26. 26.↵
    1. Blanchet L,
    2. Krooshof P,
    3. Postma G, et al
    . Discrimination between metastasis and glioblastoma multiforme based on morphometric analysis of MR images. AJNR Am J Neuroradiol 2011;32:67–73 doi:10.3174/ajnr.A2269 pmid:21051512
    Abstract/FREE Full Text
  27. 27.↵
    1. Chen XZ,
    2. Yin XM,
    3. Ai L, et al
    . Differentiation between brain glioblastoma multiforme and solitary metastasis: qualitative and quantitative analysis based on routine MR imaging. AJNR Am J Neuroradiol 2012;33:1907–12 doi:10.3174/ajnr.A3106 pmid:22743640
    Abstract/FREE Full Text
  28. 28.↵
    1. Tateishi M,
    2. Nakaura T,
    3. Kitajima M, et al
    . An initial experience of machine learning based on multi-sequence texture parameters in magnetic resonance imaging to differentiate glioblastoma from brain metastases. J Neurol Sci 2020;410:116514 doi:10.1016/j.jns.2019.116514 pmid:31869660
    CrossRefPubMed
  29. 29.↵
    1. Swinburne NC,
    2. Schefflein J,
    3. Sakai Y, et al
    . Machine learning for semi-automated classification of glioblastoma, brain metastasis and central nervous system lymphoma using magnetic resonance advanced imaging. Ann Transl Med 2019;7:232 doi:10.21037/atm.2018.08.05 pmid:31317002
    CrossRefPubMed
  30. 30.↵
    1. Qian Z,
    2. Li Y,
    3. Wang Y, et al
    . Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers. Cancer Lett 2019;451:128–35 doi:10.1016/j.canlet.2019.02.054 pmid:30878526
    CrossRefPubMed
  31. 31.↵
    1. Artzi M,
    2. Bressler I,
    3. Ben Bashat D
    . Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. J Magn Reson Imaging 2019;50:519–28 doi:10.1002/jmri.26643 pmid:30635952
    CrossRefPubMed
  32. 32.↵
    1. Bae S,
    2. An C,
    3. Ahn SS, et al
    . Robust performance of deep learning for distinguishing glioblastoma from single brain metastasis using radiomic features: model development and validation. Sci Rep 2020;10:12110 doi:10.1038/s41598-020-68980-6 pmid:32694637
    CrossRefPubMed
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Development and Validation of a Deep Learning–Based Model to Distinguish Glioblastoma from Solitary Brain Metastasis Using Conventional MR Images
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
I. Shin, H. Kim, S.S. Ahn, B. Sohn, S. Bae, J.E. Park, H.S. Kim, S.-K. Lee
Development and Validation of a Deep Learning–Based Model to Distinguish Glioblastoma from Solitary Brain Metastasis Using Conventional MR Images
American Journal of Neuroradiology Mar 2021, DOI: 10.3174/ajnr.A7003

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Development and Validation of a Deep Learning–Based Model to Distinguish Glioblastoma from Solitary Brain Metastasis Using Conventional MR Images
I. Shin, H. Kim, S.S. Ahn, B. Sohn, S. Bae, J.E. Park, H.S. Kim, S.-K. Lee
American Journal of Neuroradiology Mar 2021, DOI: 10.3174/ajnr.A7003
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • From Slices to Volumes: A Scalable Pipeline for Developing General-Purpose Brain MRI Foundation Models
  • Fully automated brain metastases segmentation using T1-weighted contrast-enhanced MR images before and after Stereotactic Radiosurgery
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

Adult Brain

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Functional

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Multiparametric MRI in PEDS Pontine Glioma
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire