Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleUltra-High-Field MRI/Imaging of Epilepsy/Demyelinating Diseases/Inflammation/Infection

Investigating Sea-Level Brain Predictors for Acute Mountain Sickness: A Multimodal MRI Study before and after High-Altitude Exposure

Wei Zhang, Jie Feng, Wenjia Liu, Shiyu Zhang, Xiao Yu, Jie Liu, Baoci Shan and Lin Ma
American Journal of Neuroradiology June 2024, 45 (6) 809-818; DOI: https://doi.org/10.3174/ajnr.A8206
Wei Zhang
aFrom the Beijing Engineering Research Center of Radiographic Techniques and Equipment (W.Z., B.S.), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
bSchool of Nuclear Science and Technology (W.Z., B.S.), University of Chinese Academy of Sciences, Beijing, China
hCognitive Neuroimaging Centre (W.Z.), Nanyang Technological University, Singapore
iLee Kong Chian School of Medicine (W.Z.), Nanyang Technological University, Singapore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Wei Zhang
Jie Feng
cThe Graduate School (J.F., X.Y., L.M.), Medical School of Chinese People’s Liberation Army, Beijing, China
dDepartment of Radiology (J.F., W.L., S.Z., X.Y., L.M.), The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jie Feng
Wenjia Liu
dDepartment of Radiology (J.F., W.L., S.Z., X.Y., L.M.), The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shiyu Zhang
dDepartment of Radiology (J.F., W.L., S.Z., X.Y., L.M.), The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
eDepartment of Radiology (S.Z.), Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiao Yu
cThe Graduate School (J.F., X.Y., L.M.), Medical School of Chinese People’s Liberation Army, Beijing, China
dDepartment of Radiology (J.F., W.L., S.Z., X.Y., L.M.), The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
fDepartment of Radiology (X.Y.), Beijing Jingmei Group General Hospital, Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jie Liu
gDepartment of Radiology (J.L.), General Hospital of Tibet Military Region, Tibet, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Baoci Shan
aFrom the Beijing Engineering Research Center of Radiographic Techniques and Equipment (W.Z., B.S.), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
bSchool of Nuclear Science and Technology (W.Z., B.S.), University of Chinese Academy of Sciences, Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Baoci Shan
Lin Ma
cThe Graduate School (J.F., X.Y., L.M.), Medical School of Chinese People’s Liberation Army, Beijing, China
dDepartment of Radiology (J.F., W.L., S.Z., X.Y., L.M.), The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Lin Ma
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Luks AM,
    2. Swenson ER,
    3. Bärtsch P
    . Acute high-altitude sickness. Eur Respir Rev 2017;26:160096 doi:10.1183/16000617.0096-2016 pmid:28143879
    Abstract/FREE Full Text
  2. 2.↵
    1. Bärtsch P,
    2. Swenson ER
    . Acute high-altitude illnesses. N Engl J Med 2013;368:2294–302 doi:10.1056/NEJMcp1214870 pmid:23758234
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Luks AM,
    2. Hackett PH
    . Medical conditions and high-altitude travel. N Engl J Med 2022;386:364–73 doi:10.1056/NEJMra2104829 pmid:35081281
    CrossRefPubMed
  4. 4.↵
    1. Canoui-Poitrine F,
    2. Veerabudun K,
    3. Larmignat P, et al
    . Risk prediction score for severe high altitude illness: a cohort study. PLos One 2014;9:e100642 doi:10.1371/journal.pone.0100642 pmid:25068815
    CrossRefPubMed
  5. 5.↵
    1. Burtscher M,
    2. Flatz M,
    3. Faulhaber M
    . Prediction of susceptibility to acute mountain sickness by Sa(O2) values during short-term exposure to hypoxia. High Alt Med Biol 2004;5:335–40 doi:10.1089/1527029042002817 pmid:15453999
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Cochand NJ,
    2. Wild M,
    3. Brugniaux JV, et al
    . Sea-level assessment of dynamic cerebral autoregulation predicts susceptibility to acute mountain sickness at high altitude. Stroke 2011;42:3628–30 doi:10.1161/STROKEAHA.111.621714 pmid:21960569
    Abstract/FREE Full Text
  7. 7.↵
    1. Faulhaber M,
    2. Wille M,
    3. Gatterer H, et al
    . Resting arterial oxygen saturation and breathing frequency as predictors for acute mountain sickness development: a prospective cohort study. Sleep Breath 2014;18:669–74 doi:10.1007/s11325-013-0932-2 pmid:24436093
    CrossRefPubMed
  8. 8.↵
    1. Karinen HM,
    2. Peltonen JE,
    3. Kahonen M, et al
    . Prediction of acute mountain sickness by monitoring arterial oxygen saturation during ascent. High Alt Med Biol 2010;11:325–32 doi:10.1089/ham.2009.1060 pmid:21190501
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Karinen HM,
    2. Uusitalo A,
    3. Vaha-Ypya H, et al
    . Heart rate variability changes at 2400 m altitude predicts acute mountain sickness on further ascent at 3000-4300 m altitudes. Front Physiol 2012;3:336 doi:10.3389/fphys.2012.00336 pmid:22969727
    CrossRefPubMed
  10. 10.↵
    1. Mandolesi G,
    2. Avancini G,
    3. Bartesaghi M, et al
    . Long-term monitoring of oxygen saturation at altitude can be useful in predicting the subsequent development of moderate-to-severe acute mountain sickness. Wilderness Environ Med 2014;25:384–91 doi:10.1016/j.wem.2014.04.015 pmid:25027753
    CrossRefPubMed
  11. 11.↵
    1. Modesti PA,
    2. Rapi S,
    3. Paniccia R, et al
    . Index measured at an intermediate altitude to predict impending acute mountain sickness. Med Sci Sports Exerc 2011;43:1811–18 doi:10.1249/MSS.0b013e31821b55df pmid:21448078
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Shen Y,
    2. Yang YQ,
    3. Liu C, et al
    . Association between physiological responses after exercise at low altitude and acute mountain sickness upon ascent is sex-dependent. Mil Med Res 2020;7:53 doi:10.1186/s40779-020-00283-3 pmid:33148321
    CrossRefPubMed
  13. 13.↵
    1. MacInnis MJ,
    2. Lohse KR,
    3. Strong JK, et al
    . Is previous history a reliable predictor for acute mountain sickness susceptibility? A meta-analysis of diagnostic accuracy. Br J Sports Med 2015;49:69–75 doi:10.1136/bjsports-2013-092921 pmid:24297836
    Abstract/FREE Full Text
  14. 14.↵
    1. Chen HC,
    2. Lin WL,
    3. Wu JY, et al
    . Change in oxygen saturation does not predict acute mountain sickness on Jade Mountain. Wilderness Environ Med 2012;23:122–27 doi:10.1016/j.wem.2012.03.014 pmid:22656657
    CrossRefPubMed
  15. 15.↵
    1. Small E,
    2. Juul N,
    3. Pomeranz D, et al
    . Predictive capacity of pulmonary function tests for acute mountain sickness. High Alt Med Biol 2021;22:193–200 doi:10.1089/ham.2020.0150 pmid:33601996
    CrossRefPubMed
  16. 16.↵
    1. Wagner DR,
    2. Knott JR,
    3. Fry JP
    . Oximetry fails to predict acute mountain sickness or summit success during a rapid ascent to 5640 meters. Wilderness Environ Med 2012;23:114–21 doi:10.1016/j.wem.2012.02.015 pmid:22656656
    CrossRefPubMed
  17. 17.↵
    1. Millet GP,
    2. Faiss R,
    3. Pialoux V
    . Point: hypobaric hypoxia induces different physiological responses from normobaric hypoxia. J Appl Physiol (1985) 2012;112:1783–84 doi:10.1152/japplphysiol.00067.2012 pmid:22267386
    CrossRefPubMed
  18. 18.↵
    1. Meier D,
    2. Collet TH,
    3. Locatelli I, et al
    . Does this patient have acute mountain sickness?: the rational clinical examination systematic review. JAMA 2017;318:1810–19 doi:10.1001/jama.2017.16192 pmid:29136449
    CrossRefPubMed
  19. 19.↵
    1. Lawley JS,
    2. Alperin N,
    3. Bagci AM, et al
    . Normobaric hypoxia and symptoms of acute mountain sickness: elevated brain volume and intracranial hypertension. Ann Neurol 2014;75:890–98 doi:10.1002/ana.24171 pmid:24788400
    CrossRefPubMed
  20. 20.↵
    1. Zhou Y,
    2. Huang X,
    3. Zhao T, et al
    . Hypoxia augments LPS-induced inflammation and triggers high altitude cerebral edema in mice. Brain Behav Immun 2017;64:266–75 doi:10.1016/j.bbi.2017.04.013 pmid:28433745
    CrossRefPubMed
  21. 21.↵
    1. Storz JF,
    2. Scott GR
    . Life ascending: mechanism and process in physiological adaptation to high-altitude hypoxia. Annu Rev Ecol Evol Syst 2019;50:503–26 doi:10.1146/annurev-ecolsys-110218-025014 pmid:33033467
    CrossRefPubMed
  22. 22.↵
    1. Zhang X,
    2. Zhang J
    . The human brain in a high-altitude natural environment: a review. Front Hum Neurosci 2022;16:915995 doi:10.3389/fnhum.2022.915995 pmid:36188182
    CrossRefPubMed
  23. 23.↵
    1. Dhar P,
    2. Sharma VK,
    3. Das SK, et al
    . Differential responses of autonomic function in sea level residents, acclimatized lowlanders at >3500 m and Himalayan high altitude natives at >3500 m: a cross-sectional study. Respir Physiol Neurobiol 2018;254:40–48 doi:10.1016/j.resp.2018.04.002 pmid:29649580
    CrossRefPubMed
  24. 24.↵
    1. Sander M
    . Does the sympathetic nervous system adapt to chronic altitude exposure? Adv Exp Med Biol 2016;903:375–93 doi:10.1007/978-1-4899-7678-9_25 pmid:27343109
    CrossRefPubMed
  25. 25.↵
    1. Wilson MH
    . Monro-Kellie 2.0: The dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab 2016;36:1338–50 doi:10.1177/0271678X16648711 pmid:27174995
    CrossRefPubMed
  26. 26.↵
    1. Wei W,
    2. Wang X,
    3. Gong Q, et al
    . Cortical thickness of Native Tibetans in the Qinghai-Tibetan Plateau. AJNR Am J Neuroradiol 2017;38:553–60 doi:10.3174/ajnr.A5050 pmid:28104637
    Abstract/FREE Full Text
  27. 27.↵
    1. Benson JC,
    2. Madhavan AA,
    3. Cutsforth-Gregory JK, et al
    . The Monro-Kellie Doctrine: a review and call for revision. AJNR Am J Neuroradiol 2023;44:2–6 doi:10.3174/ajnr.A7721 pmid:36456084
    Abstract/FREE Full Text
  28. 28.↵
    1. Fan C,
    2. Zhao Y,
    3. Yu Q, et al
    . Reversible brain abnormalities in people without signs of mountain sickness during high-altitude exposure. Sci Rep 2016;6:33596 doi:10.1038/srep33596 pmid:27633944
    CrossRefPubMed
  29. 29.↵
    1. Hunt JS,
    2. Theilmann RJ,
    3. Smith ZM, et al
    . Cerebral diffusion and T-2: MRI predictors of acute mountain sickness during sustained high-altitude hypoxia. J Cereb Blood Flow Metab 2013;33:372–80 doi:10.1038/jcbfm.2012.184 pmid:23211961
    CrossRefPubMed
  30. 30.↵
    1. Roach RC,
    2. Hackett PH,
    3. Oelz O, et al
    ; Lake Louise AMS Score Consensus Committee. The 2018 Lake Louise Acute Mountain Sickness Score. High Alt Med Biol 2018;19:4–6 doi:10.1089/ham.2017.0164 pmid:29583031
    CrossRefPubMed
  31. 31.↵
    1. Rolls ET,
    2. Huang CC,
    3. Lin CP, et al
    . Automated anatomical labelling atlas 3. Neuroimage 2020;206:116189 doi:10.1016/j.neuroimage.2019.116189 pmid:31521825
    CrossRefPubMed
  32. 32.↵
    1. Desikan RS,
    2. Segonne F,
    3. Fischl B, et al
    . An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006;31:968–80 doi:10.1016/j.neuroimage.2006.01.021 pmid:16530430
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Tibshirani R
    . Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological) 1996;58:267–88 doi:10.1111/j.2517-6161.1996.tb02080.x
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Fawcett T
    . An introduction to ROC analysis. Pattern Recognition Letters 2006;27:861–74. Accessed December 26, 2023 doi:10.1016/j.patrec.2005.10.010
    CrossRefWeb of Science
  35. 35.↵
    1. Jeni LA,
    2. Cohn JF,
    3. De La Torre F
    . Facing imbalanced data recommendations for the use of performance metrics. Int Conf Affect Comput Intell Interact Workshops 2013;2013:245–51 doi:10.1109/ACII.2013.47 pmid:25574450
    CrossRefPubMed
  36. 36.↵
    1. Wang L,
    2. Han M,
    3. Li X, et al
    . Review of classification methods on unbalanced data sets. IEEE Access 2021;9:64606–28. Accessed December 25, 2023 doi:10.1109/ACCESS.2021.3074243
    CrossRef
  37. 37.↵
    1. Thomas Yeo BT,
    2. Krienen FM,
    3. Sepulcre J, et al
    . The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 2011;106:1125–65 doi:10.1152/jn.00338.2011 pmid:21653723
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Flach PA,
    2. Wu S
    . Repairing concavities in ROC curves. Internattional Joint Conference on Artificial Intelligence 2005:702–07. https://www.academia.edu/download/35346892/2000402.pdf. Accessed December 26, 2023
  39. 39.↵
    1. Zou QH,
    2. Zhu CZ,
    3. Yang Y, et al
    . An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. J Neurosci Methods 2008;172:137–41 doi:10.1016/j.jneumeth.2008.04.012 pmid:18501969
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Zuo XN,
    2. Ehmke R,
    3. Mennes M, et al
    . Network centrality in the human functional connectome. Cereb Cortex 2012;22:1862–75 doi:10.1093/cercor/bhr269 pmid:21968567
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Legros A,
    2. Marshall HR,
    3. Beuter A, et al
    . Effects of acute hypoxia on postural and kinetic tremor. Eur J Appl Physiol [ Physiol 2010;110:109–19 doi:10.1007/s00421-010-1475-x pmid:20414673
    CrossRefPubMed
  42. 42.↵
    1. Kline DD
    . Chronic intermittent hypoxia affects integration of sensory input by neurons in the nucleus tractus solitarii. Respir Physiol Neurobiol 2010;174:29–36 doi:10.1016/j.resp.2010.04.015 pmid:20416405
    CrossRefPubMed
  43. 43.↵
    1. LaManna JC,
    2. Vendel LM,
    3. Farrell RM
    . Brain adaptation to chronic hypobaric hypoxia in rats. J Appl Physiol (1985) 1992;72:2238–43 doi:10.1152/jappl.1992.72.6.2238 pmid:1629078
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Quairiaux C,
    2. Sizonenko SV,
    3. Mégevand P, et al
    . Functional deficit and recovery of developing sensorimotor networks following neonatal hypoxic–ischemic injury in the rat. Cereb Cortex 2010;20:2080–91 doi:10.1093/cercor/bhp281 pmid:20051355
    CrossRefPubMedWeb of Science
  45. 45.↵
    1. Wang Y,
    2. Wang Y,
    3. Hua G, et al
    . Changes of functional brain network in neonates with different degrees of hypoxic-ischemic encephalopathy. Brain Connect 2023;13:427–35 doi:10.1089/brain.2022.0073 pmid:37279260
    CrossRefPubMed
  46. 46.↵
    1. Jiang L,
    2. El-Metwally D,
    3. Sours Rhodes C, et al
    . Alterations in motor functional connectivity in neonatal hypoxic ischemic encephalopathy. Brain Inj 2022;36:287–94 doi:10.1080/02699052.2022.2034041 pmid:35113755
    CrossRefPubMed
  47. 47.↵
    1. Peng W,
    2. Jia Z,
    3. Huang X, et al
    . Brain structural abnormalities in emotional regulation and sensory processing regions associated with anxious depression. Prog Neuropsychopharmacol Biol Psychiatry 2019;94:109676 doi:10.1016/j.pnpbp.2019.109676 pmid:31226395
    CrossRefPubMed
  48. 48.↵
    1. Kessner SS,
    2. Schlemm E,
    3. Gerloff C, et al
    . Grey and white matter network disruption is associated with sensory deficits after stroke. Neuroimage Clin 2021;31:102698 doi:10.1016/j.nicl.2021.102698 pmid:34023668
    CrossRefPubMed
  49. 49.↵
    1. Williams SD,
    2. Setzer B,
    3. Fultz NE, et al
    . Neural activity induced by sensory stimulation can drive large-scale cerebrospinal fluid flow during wakefulness in humans. PLoS Biol 2023;21:e300203 doi:10.1371/journal.pbio.3002035 pmid:36996009
    CrossRefPubMed
  50. 50.↵
    1. Gay CW,
    2. Robinson ME,
    3. Lai S, et al
    . Abnormal resting-state functional connectivity in patients with chronic fatigue syndrome: results of seed and data-driven analyses. Brain Connect 2016;6:48–56 doi:10.1089/brain.2015.0366 pmid:26449441
    CrossRefPubMed
  51. 51.↵
    1. Betzel RF,
    2. Satterthwaite TD,
    3. Gold JI, et al
    . Positive affect, surprise, and fatigue are correlates of network flexibility. Sci Rep 2017;7:520 doi:10.1038/s41598-017-00425-z pmid:28364117
    CrossRefPubMed
  52. 52.↵
    1. Schommer K,
    2. Wiesegart N,
    3. Menold E, et al
    . Training in normobaric hypoxia and its effects on acute mountain sickness after rapid ascent to 4559 m. High Alt Med Biol 2010;11:19–25 doi:10.1089/ham.2009.1019 pmid:20367484
    CrossRefPubMedWeb of Science
  53. 53.↵
    1. Trumbower RD,
    2. Jayaraman A,
    3. Mitchell GS, et al
    . Exposure to acute intermittent hypoxia augments somatic motor function in humans with incomplete spinal cord injury. Neurorehabil Neural Repair 2012;26:163–72 doi:10.1177/1545968311412055 pmid:21821826
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 45 (6)
American Journal of Neuroradiology
Vol. 45, Issue 6
1 Jun 2024
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Investigating Sea-Level Brain Predictors for Acute Mountain Sickness: A Multimodal MRI Study before and after High-Altitude Exposure
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Wei Zhang, Jie Feng, Wenjia Liu, Shiyu Zhang, Xiao Yu, Jie Liu, Baoci Shan, Lin Ma
Investigating Sea-Level Brain Predictors for Acute Mountain Sickness: A Multimodal MRI Study before and after High-Altitude Exposure
American Journal of Neuroradiology Jun 2024, 45 (6) 809-818; DOI: 10.3174/ajnr.A8206

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Sea-Level Brain Predictors of Mountain Sickness
Wei Zhang, Jie Feng, Wenjia Liu, Shiyu Zhang, Xiao Yu, Jie Liu, Baoci Shan, Lin Ma
American Journal of Neuroradiology Jun 2024, 45 (6) 809-818; DOI: 10.3174/ajnr.A8206
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (1)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Modeling Brain Functional Networks Using Graph Neural Networks: A Review and Clinical Application
    Wei Zhang, Qian Hong
    IECE Transactions on Intelligent Systematics 2024 1 2

More in this TOC Section

  • 7T MRI vasculitis imaging
  • Synthetic MRI Links to MS Disability
  • 7T MRI of the Internal Auditory Canal
Show more Ultra-High-Field MRI/Imaging of Epilepsy/Demyelinating Diseases/Inflammation/Infection

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire