Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates


Improved Turnaround Times | Median time to first decision: 12 days

Review ArticleBrain Tumor Imaging

Imaging Genomics of Glioma Revisited: Analytic Methods to Understand Spatial and Temporal Heterogeneity

Cymon N. Kersch, Minjae Kim, Jared Stoller, Ramon F. Barajas and Ji Eun Park
American Journal of Neuroradiology May 2024, 45 (5) 537-548; DOI: https://doi.org/10.3174/ajnr.A8148
Cymon N. Kersch
aFrom the Department of Radiation Medicine (C.N.K.), Oregon Health and Science University, Portland, Oregon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Cymon N. Kersch
Minjae Kim
bDepartment of Radiology and Research Institute of Radiology (M.K., J.E.P.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Minjae Kim
Jared Stoller
cDepartment of Diagnostic Radiology (J.S., R.F.B.), Oregon Health and Science University, Portland, Oregon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jared Stoller
Ramon F. Barajas Jr
cDepartment of Diagnostic Radiology (J.S., R.F.B.), Oregon Health and Science University, Portland, Oregon
dKnight Cancer Institute (R.F.B.), Oregon Health and Science University, Portland, Oregon
eAdvanced Imaging Research Center (R.F.B.), Oregon Health and Science University, Portland, Oregon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ramon F. Barajas Jr
Ji Eun Park
bDepartment of Radiology and Research Institute of Radiology (M.K., J.E.P.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ji Eun Park
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Diehn M,
    2. Nardini C,
    3. Wang DS, et al
    . Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc Natl Acad Sci U S A 2008;105:5213–18 doi:10.1073/pnas.0801279105 pmid:18362333
    Abstract/FREE Full Text
  2. 2.↵
    1. Kumar V,
    2. Gu Y,
    3. Basu S, et al
    . Radiomics: the process and the challenges. Magn Reson Imaging 2012;30:1234–48 doi:10.1016/j.mri.2012.06.010 pmid:22898692
    CrossRefPubMed
  3. 3.↵
    1. Hosny A,
    2. Parmar C,
    3. Quackenbush J, et al
    . Artificial intelligence in radiology. Nat Rev Cancer 2018;18:500–10 doi:10.1038/s41568-018-0016-5 pmid:29777175
    CrossRefPubMed
  4. 4.↵
    1. Gillies RJ,
    2. Kinahan PE,
    3. Hricak H
    . Radiomics: images are more than pictures, they are data. Radiology 2016;278:563–77 doi:10.1148/radiol.2015151169 pmid:26579733
    CrossRefPubMed
  5. 5.↵
    1. Hiley C,
    2. de Bruin EC,
    3. McGranahan N, et al
    . Deciphering intratumor heterogeneity and temporal acquisition of driver events to refine precision medicine. Genome Biol 2014;15:453 doi:10.1186/s13059-014-0453-8 pmid:25222836
    CrossRefPubMed
  6. 6.↵
    1. Waitkus MS,
    2. Diplas BH,
    3. Yan H
    . Isocitrate dehydrogenase mutations in gliomas. Neuro Oncol 2015;18:16–26 doi:10.1093/neuonc/nov136 pmid:26188014
    CrossRefPubMed
  7. 7.↵
    1. van den Bent MJ,
    2. Gao Y,
    3. Kerkhof M, et al
    . Changes in the EGFR amplification and EGFRvIII expression between paired primary and recurrent glioblastomas. Neuro Oncol 2015;17:935–41 doi:10.1093/neuonc/nov013 pmid:25691693
    CrossRefPubMed
  8. 8.↵
    1. Brandes AA,
    2. Franceschi E,
    3. Tosoni A, et al
    . O(6)-methylguanine DNA-methyltransferase methylation status can change between first surgery for newly diagnosed glioblastoma and second surgery for recurrence: clinical implications. Neuro Oncol 2010;12:283–88 doi:10.1093/neuonc/nop050 pmid:20167816
    CrossRefPubMed
  9. 9.↵
    1. Esteller M,
    2. Garcia-Foncillas J,
    3. Andion E, et al
    . Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 2000;343:1350–54 doi:10.1056/NEJM200011093431901 pmid:11070098
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Hegi ME,
    2. Diserens AC,
    3. Gorlia T, et al
    . MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005;352:997–1003 doi:10.1056/NEJMoa043331 pmid:15758010
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Yan H,
    2. Parsons DW,
    3. Jin G, et al
    . IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009;360:765–73 doi:10.1056/NEJMoa0808710 pmid:19228619
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Park JE,
    2. Park SY,
    3. Kim HJ, et al
    . Reproducibility and generalizability in radiomics modeling: possible strategies in radiologic and statistical perspectives. Korean J Radiol 2019;20:1124–37 doi:10.3348/kjr.2018.0070 pmid:31270976
    CrossRefPubMed
  13. 13.↵
    1. Jiang S,
    2. Eberhart CG,
    3. Zhang Y, et al
    . Amide proton transfer-weighted magnetic resonance image-guided stereotactic biopsy in patients with newly diagnosed gliomas. Eur J Cancer 2017;83:9–18 doi:10.1016/j.ejca.2017.06.009 pmid:28704644
    CrossRefPubMed
  14. 14.↵
    1. Verburg N,
    2. Koopman T,
    3. Yaqub MM, et al
    . Improved detection of diffuse glioma infiltration with imaging combinations: a diagnostic accuracy study. Neuro Oncol 2020;22:412–22 doi:10.1093/neuonc/noz180 pmid:31550353
    CrossRefPubMed
  15. 15.↵
    1. Park JE,
    2. Kickingereder P,
    3. Kim HS
    . Radiomics and deep learning from research to clinical workflow: neuro-oncologic imaging. Korean J Radiol 2020;21:1126–37 doi:10.3348/kjr.2019.0847 pmid:32729271
    CrossRefPubMed
  16. 16.↵
    1. Louis DN,
    2. Perry A,
    3. Wesseling P, et al
    . The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 2021;23:1231–51 doi:10.1093/neuonc/noab106 pmid:34185076
    CrossRefPubMed
  17. 17.↵
    1. Ramos-Fresnedo A,
    2. Pullen MW,
    3. Perez-Vega C, et al
    . The survival outcomes of molecular glioblastoma IDH-wildtype: a multicenter study. J Neurooncol 2022;157:177–85 doi:10.1007/s11060-022-03960-6 pmid:35175545
    CrossRefPubMed
  18. 18.↵
    1. Park YW,
    2. Han K,
    3. Ahn SS, et al
    . Prediction of IDH1-mutation and 1p/19q-codeletion status using preoperative MR imaging phenotypes in lower grade gliomas. AJNR Am J Neuroradiol 2018;39:37–42 doi:10.3174/ajnr.A5421 pmid:29122763
    Abstract/FREE Full Text
  19. 19.↵
    1. Patel SH,
    2. Poisson LM,
    3. Brat DJ, et al
    . T2-FLAIR mismatch, an imaging biomarker for IDH and 1p/19q status in lower-grade gliomas: a TCGA/TCIA project. Clin Cancer Res 2017;23:6078–85 doi:10.1158/1078-0432.CCR-17-0560 pmid:28751449
    Abstract/FREE Full Text
  20. 20.↵
    1. Broen MP,
    2. Smits M,
    3. Wijnenga MM, et al
    . The T2-FLAIR mismatch sign as an imaging marker for non-enhancing IDH-mutant, 1p/19q-intact lower-grade glioma: a validation study. Neuro Oncol 2018;20:1393–99 doi:10.1093/neuonc/noy048 pmid:29590424
    CrossRefPubMed
  21. 21.↵
    1. Jain R,
    2. Johnson DR,
    3. Patel SH, et al
    . “Real world” use of a highly reliable imaging sign: “T2-FLAIR mismatch” for identification of IDH mutant astrocytomas. Neuro Oncol 2020;22:936–43 doi:10.1093/neuonc/noaa041 pmid:32064507
    CrossRefPubMed
  22. 22.↵
    1. Deguchi S,
    2. Oishi T,
    3. Mitsuya K, et al
    . Clinicopathological analysis of T2-FLAIR mismatch sign in lower-grade gliomas. Sci Rep 2020;10:10113 doi:10.1038/s41598-020-67244-7 pmid:32572107
    CrossRefPubMed
  23. 23.↵
    1. Onishi S,
    2. Amatya VJ,
    3. Kolakshyapati M, et al
    . T2-FLAIR mismatch sign in dysembryoplasticneuroepithelial tumor. Eur J Radiol 2020;126:108924 doi:10.1016/j.ejrad.2020.108924 pmid:32193035
    CrossRefPubMed
  24. 24.↵
    1. Johnson DR,
    2. Kaufmann TJ,
    3. Patel SH, et al
    . There is an exception to every rule-T2-FLAIR mismatch sign in gliomas. Neuroradiology 2019;61:225–27 doi:10.1007/s00234-018-2148-4 pmid:30565056
    CrossRefPubMed
  25. 25.↵
    1. Lu J,
    2. Li X,
    3. Li H
    . Perfusion parameters derived from MRI for preoperative prediction of IDH mutation and MGMT promoter methylation status in glioblastomas. Magn Reson Imaging 2021;83:189–95 doi:10.1016/j.mri.2021.09.005 pmid:34506909
    CrossRefPubMed
  26. 26.↵
    1. Li Z,
    2. Zhao W,
    3. He B, et al
    . Application of distributed parameter model to assessment of glioma IDH mutation status by dynamic contrast-enhanced magnetic resonance imaging. Contrast Media Mol Imaging 2020;2020:8843084 doi:10.1155/2020/8843084 pmid:33299387
    CrossRefPubMed
  27. 27.↵
    1. Mancini L,
    2. Casagranda S,
    3. Gautier G, et al
    . CEST MRI provides amide/amine surrogate biomarkers for treatment-naïve glioma sub-typing. Eur J Nucl Med Mol Imaging 2022;49:2377–91 doi:10.1007/s00259-022-05676-1 pmid:35029738
    CrossRefPubMed
  28. 28.↵
    1. Rohwer N,
    2. Zasada C,
    3. Kempa S, et al
    . The growing complexity of HIF-1α’s role in tumorigenesis: DNA repair and beyond. Oncogene 2013;32:3569–76 doi:10.1038/onc.2012.510 pmid:23160373
    CrossRefPubMed
  29. 29.↵
    1. Choi YS,
    2. Bae S,
    3. Chang JH, et al
    . Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics. Neuro Oncol 2021;23:304–13 doi:10.1093/neuonc/noaa177 pmid:32706862
    CrossRefPubMed
  30. 30.↵
    1. Lu CF,
    2. Hsu FT,
    3. Hsieh KL, et al
    . Machine learning–based radiomics for molecular subtyping of gliomas. Clin Cancer Res 2018;24:4429–36 doi:10.1158/1078-0432.CCR-17-3445 pmid:29789422
    Abstract/FREE Full Text
  31. 31.↵
    1. Chang P,
    2. Grinband J,
    3. Weinberg BD, et al
    . Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR Am J Neuroradiol 2018;39:1201–07 doi:10.3174/ajnr.A5667 pmid:29748206
    Abstract/FREE Full Text
  32. 32.↵
    1. Huang LE
    . Impact of CDKN2A/B homozygous deletion on the prognosis and biology of IDH-mutant glioma. Biomedicines 2022;10:246 doi:10.3390/biomedicines10020246 pmid:35203456
    CrossRefPubMed
  33. 33.↵
    1. Marker DF,
    2. Pearce TM
    . Homozygous deletion of CDKN2A by fluorescence in situ hybridization is prognostic in grade 4, but not grade 2 or 3 IDH-mutant astrocytomas. Acta Neuropathol Commun 2020;8:169 doi:10.1186/s40478-020-01044-y pmid:33081848
    CrossRefPubMed
  34. 34.↵
    1. Paugh BS,
    2. Broniscer A,
    3. Qu C, et al
    . Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol 2011;29:3999–4006 doi:10.1200/JCO.2011.35.5677 pmid:21931021
    Abstract/FREE Full Text
  35. 35.↵
    1. Chan KM,
    2. Fang D,
    3. Gan H, et al
    . The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev 2013;27:985–90 doi:10.1101/gad.217778.113 pmid:23603901
    Abstract/FREE Full Text
  36. 36.↵
    1. Vallero SG,
    2. Bertero L,
    3. Morana G, et al
    . Pediatric diffuse midline glioma H3K27- altered: a complex clinical and biological landscape behind a neatly defined tumor type. Front Oncol 2022;12:1082062 doi:10.3389/fonc.2022.1082062 pmid:36727064
    CrossRefPubMed
  37. 37.↵
    1. Zhang L,
    2. Wang R,
    3. Gao J, et al
    . A novel MRI-based deep learning networks combined with attention mechanism for predicting CDKN2A/B homozygous deletion status in IDH-mutant astrocytoma. Eur Radiol 2023;34:391–99 doi:10.1007/s00330-023-09944-y pmid:37553486
    CrossRefPubMed
  38. 38.↵
    1. Gao J,
    2. Liu Z,
    3. Pan H, et al
    . Preoperative discrimination of CDKN2A/B homozygous deletion status in isocitrate dehydrogenase-mutant astrocytoma: a deep learning-based radiomics model using MRI. J Magn Reson Imaging 2023 Aug 9. [Epub ahead of print] doi:10.1002/jmri.28945 pmid:37555723
    CrossRefPubMed
  39. 39.↵
    1. Park YW,
    2. Park KS,
    3. Park JE, et al
    . Qualitative and quantitative magnetic resonance imaging phenotypes may predict CDKN2A/B homozygous deletion status in isocitrate dehydrogenase-mutant astrocytomas: a multicenter study. Korean J Radiol 2023;24:133–44 doi:10.3348/kjr.2022.0732 pmid:36725354
    CrossRefPubMed
  40. 40.↵
    1. Zhao JP,
    2. Liu XJ,
    3. Lin HZ, et al
    . MRI comparative study of diffuse midline glioma, H3 K27-altered and glioma in the midline without H3 K27-altered. BMC Neurol 2022;22:498 doi:10.1186/s12883-022-03026-0 pmid:36550486
    CrossRefPubMed
  41. 41.↵
    1. Kurokawa R,
    2. Kurokawa M,
    3. Baba A, et al
    . Dynamic susceptibility contrast-MRI parameters, ADC values, and the T2-FLAIR mismatch sign are useful to differentiate between H3-mutant and H3-wild-type high-grade midline glioma. Eur Radiol 2022;32:3672–82 doi:10.1007/s00330-021-08476-7 pmid:35022811
    CrossRefPubMed
  42. 42.↵
    1. Aboian MS,
    2. Solomon DA,
    3. Felton E, et al
    . Imaging characteristics of pediatric diffuse midline gliomas with histone H3 K27M mutation. AJNR Am J Neuroradiol 2017;38:795–800 doi:10.3174/ajnr.A5076 pmid:28183840
    Abstract/FREE Full Text
  43. 43.↵
    1. Chung C,
    2. Sweha SR,
    3. Pratt D, et al
    . Integrated metabolic and epigenomic reprograming by H3K27M mutations in diffuse intrinsic pontine gliomas. Cancer Cell 2020;38:334–49.e9 doi:10.1016/j.ccell.2020.07.008 pmid:32795401
    CrossRefPubMed
  44. 44.↵
    1. Eskilsson E,
    2. Røsland GV,
    3. Solecki G, et al
    . EGFR heterogeneity and implications for therapeutic intervention in glioblastoma. Neuro Oncol 2018;20:743–52 doi:10.1093/neuonc/nox191 pmid:29040782
    CrossRefPubMed
  45. 45.↵
    1. Rizzo S,
    2. Botta F,
    3. Raimondi S, et al
    . Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp 2018;2:36 doi:10.1186/s41747-018-0068-z pmid:30426318
    CrossRefPubMed
  46. 46.↵
    1. Wei J,
    2. Yang G,
    3. Hao X, et al
    . A multi-sequence and habitat-based MRI radiomics signature for preoperative prediction of MGMT promoter methylation in astrocytomas with prognostic implication. Eur Radiol 2019;29:877–88 doi:10.1007/s00330-018-5575-z pmid:30039219
    CrossRefPubMed
  47. 47.↵
    1. Rathore S,
    2. Akbari H,
    3. Rozycki M, et al
    . Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1. Sci Rep 2018;8:5087 doi:10.1038/s41598-018-22739-2 pmid:29572492
    CrossRefPubMed
  48. 48.↵
    1. Yogananda CG,
    2. Shah BR,
    3. Nalawade SS, et al
    . MRI-based deep-learning method for determining glioma MGMT promoter methylation status. AJNR Am J Neuroradiol 2021;42:845–52 doi:10.3174/ajnr.A7029 pmid:33664111
    Abstract/FREE Full Text
  49. 49.↵
    1. Kim BH,
    2. Lee H,
    3. Choi KS, et al
    . Validation of MRI-based models to predict MGMT promoter methylation in gliomas: BraTS 2021 radiogenomics challenge. Cancers (Basel) 2022;14:14 doi:10.3390/cancers14194827 pmid:36230750
    CrossRefPubMed
  50. 50.↵
    1. Hu LS,
    2. Wang L,
    3. Hawkins-Daarud A, et al
    . Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma. Sci Rep 2021;11:3932 doi:10.1038/s41598-021-83141-z pmid:33594116
    CrossRefPubMed
  51. 51.↵
    1. Li Y,
    2. Liu X,
    3. Xu K, et al
    . MRI features can predict EGFR expression in lower grade gliomas: a voxel-based radiomic analysis. Eur Radiol 2018;28:356–62 doi:10.1007/s00330-017-4964-z pmid:28755054
    CrossRefPubMed
  52. 52.↵
    1. Kihira S,
    2. Tsankova NM,
    3. Bauer A, et al
    . Multiparametric MRI texture analysis in prediction of glioma biomarker status: added value of MR diffusion. Neurooncol Adv 2021;3:vdab051 doi:10.1093/noajnl/vdab051 pmid:34056604
    CrossRefPubMed
  53. 53.↵
    1. Gupta A,
    2. Young RJ,
    3. Shah AD, et al
    . Pretreatment dynamic susceptibility contrast MRI perfusion in glioblastoma: prediction of EGFR gene amplification. Clin Neuroradiol 2015;25:143–50 doi:10.1007/s00062-014-0289-3 pmid:24474262
    CrossRefPubMed
  54. 54.↵
    1. Gu Z,
    2. Eils R,
    3. Schlesner M
    . Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016;32:2847–49 doi:10.1093/bioinformatics/btw313 pmid:27207943
    CrossRefPubMed
  55. 55.↵
    1. Ringnér M
    . What is principal component analysis? Nat Biotechnol 2008;26:303–04 doi:10.1038/nbt0308-303 pmid:18327243
    CrossRefPubMedWeb of Science
  56. 56.↵
    1. Akbari H,
    2. Bakas S,
    3. Pisapia JM, et al
    . In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature. Neuro Oncol 2018;20:1068–79 doi:10.1093/neuonc/noy033 pmid:29617843
    CrossRefPubMed
  57. 57.↵
    1. Bakas S,
    2. Akbari H,
    3. Pisapia J, et al
    . In vivo detection of EGFRvIII in glioblastoma via perfusion magnetic resonance imaging signature consistent with deep peritumoral infiltration: the φ-index. Clin Cancer Res 2017;23:4724–34 doi:10.1158/1078-0432.CCR-16-1871 pmid:28428190
    Abstract/FREE Full Text
  58. 58.↵
    1. Nabors LB,
    2. Portnow J,
    3. Ahluwalia M, et al
    . Central nervous system cancers, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2020;18:1537–70 doi:10.6004/jnccn.2020.0052 pmid:33152694
    CrossRefPubMed
  59. 59.↵
    1. Stupp R,
    2. Taillibert S,
    3. Kanner A, et al
    . Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 2017;318:2306–16 doi:10.1001/jama.2017.18718 pmid:29260225
    CrossRefPubMed
  60. 60.↵
    1. Pekmezci M,
    2. Morshed RA,
    3. Chunduru P, et al
    . Detection of glioma infiltration at the tumor margin using quantitative stimulated Raman scattering histology. Sci Rep 2021;11:12162 doi:10.1038/s41598-021-91648-8 pmid:34108566
    CrossRefPubMed
  61. 61.↵
    1. Chang PD,
    2. Malone HR,
    3. Bowden SG, et al
    . A multiparametric model for mapping cellularity in glioblastoma using radiographically localized biopsies. AJNR Am J Neuroradiol 2017;38:890–98 doi:10.3174/ajnr.A5112 pmid:28255030
    Abstract/FREE Full Text
  62. 62.↵
    1. Akbari H,
    2. Macyszyn L,
    3. Da X, et al
    . Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma. Neurosurgery 2016;78:572–80 doi:10.1227/NEU.0000000000001202 pmid:26813856
    CrossRefPubMed
  63. 63.↵
    1. Tian H,
    2. Wu H,
    3. Wu G, et al
    . Noninvasive prediction of TERT promoter mutations in high-grade glioma by radiomics analysis based on multiparameter MRI. Biomed Res Int 2020;2020:3872314 doi:10.1155/2020/3872314 pmid:32509858
    CrossRefPubMed
  64. 64.↵
    1. Abdollahi H,
    2. Chin E,
    3. Clark H, et al
    . Radiomics-guided radiation therapy: opportunities and challenges. Phys Med Biol 2022;67 doi:10.1088/1361-6560/ac6fab pmid:35561699
    CrossRefPubMed
  65. 65.↵
    1. Lim M,
    2. Weller M,
    3. Idbaih A, et al
    . Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro Oncol 2022;24:1935–49 doi:10.1093/neuonc/noac116 pmid:35511454
    CrossRefPubMed
  66. 66.↵
    1. Omuro A,
    2. Brandes AA,
    3. Carpentier AF, et al
    . Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: an international randomized phase III trial. Neuro Oncol 2023;25:123–34 doi:10.1093/neuonc/noac099 pmid:35419607
    CrossRefPubMed
  67. 67.↵
    1. Cloughesy TF,
    2. Mochizuki AY,
    3. Orpilla JR, et al
    . Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med 2019;25:477–86 doi:10.1038/s41591-018-0337-7 pmid:30742122
    CrossRefPubMed
  68. 68.↵
    1. George E,
    2. Flagg E,
    3. Chang K, et al
    . Radiomics-based machine learning for outcome prediction in a multicenter Phase II study of programmed death-ligand 1 inhibition immunotherapy for glioblastoma. AJNR Am J Neuroradiol 2022;43:675–81 doi:10.3174/ajnr.A7488 pmid:35483906
    Abstract/FREE Full Text
  69. 69.↵
    1. Khalili N,
    2. Kazerooni AF,
    3. Familiar A, et al
    . Radiomics for characterization of the glioma immune microenvironment. NPJ Precis Oncol 2023;7:59 doi:10.1038/s41698-023-00413-9 pmid:37337080
    CrossRefPubMed
  70. 70.↵
    1. Tomaszewski MR,
    2. Gillies RJ
    . The biological meaning of radiomic features. Radiology 2021;298:505–16 doi:10.1148/radiol.2021202553 pmid:33399513
    CrossRefPubMed
  71. 71.↵
    1. O’Connor JP,
    2. Rose CJ,
    3. Waterton JC, et al
    . Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res 2015;21:249–57 doi:10.1158/1078-0432.CCR-14-0990 pmid:25421725
    Abstract/FREE Full Text
  72. 72.↵
    1. Henning EC,
    2. Azuma C,
    3. Sotak CH, et al
    . Multispectral quantification of tissue types in a RIF-1 tumor model with histological validation: Part I. Magn Reson Med 2007;57:501–12 doi:10.1002/mrm.21161 pmid:17326181
    CrossRefPubMed
  73. 73.↵
    1. Carano RA,
    2. Ross AL,
    3. Ross J, et al
    . Quantification of tumor tissue populations by multispectral analysis. Magn Reson Med 2004;51:542–51 doi:10.1002/mrm.10731 pmid:15004796
    CrossRefPubMed
  74. 74.↵
    1. Park JE,
    2. Kim HS,
    3. Goh MJ, et al
    . Pseudoprogression in patients with glioblastoma: assessment by using volume-weighted voxel-based multiparametric clustering of MR imaging data in an independent test set. Radiology 2015;275:792–802 doi:10.1148/radiol.14141414 pmid:25611736
    CrossRefPubMed
  75. 75.↵
    1. Jardim-Perassi BV,
    2. Huang S,
    3. Dominguez-Viqueira W, et al
    . Multiparametric MRI and coregistered histology identify tumor habitats in breast cancer mouse models. Cancer Res 2019;79:3952–64 doi:10.1158/0008-5472.CAN-19-0213 pmid:31186232
    CrossRefPubMed
  76. 76.↵
    1. Furnari FB,
    2. Cloughesy TF,
    3. Cavenee WK, et al
    . Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma. Nat Rev Cancer 2015;15:302–10 doi:10.1038/nrc3918 pmid:25855404
    CrossRefPubMed
  77. 77.↵
    1. Kim M,
    2. Park JE,
    3. Kim HS, et al
    . Spatiotemporal habitats from multiparametric physiologic MRI distinguish tumor progression from treatment-related change in post-treatment glioblastoma. Eur Radiol 2021;31:6374–83 doi:10.1007/s00330-021-07718-y pmid:33569615
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 45 (5)
American Journal of Neuroradiology
Vol. 45, Issue 5
1 May 2024
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Imaging Genomics of Glioma Revisited: Analytic Methods to Understand Spatial and Temporal Heterogeneity
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Cymon N. Kersch, Minjae Kim, Jared Stoller, Ramon F. Barajas, Ji Eun Park
Imaging Genomics of Glioma Revisited: Analytic Methods to Understand Spatial and Temporal Heterogeneity
American Journal of Neuroradiology May 2024, 45 (5) 537-548; DOI: 10.3174/ajnr.A8148

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Imaging Genomics of Gliomas
Cymon N. Kersch, Minjae Kim, Jared Stoller, Ramon F. Barajas, Ji Eun Park
American Journal of Neuroradiology May 2024, 45 (5) 537-548; DOI: 10.3174/ajnr.A8148
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • PART 1: METHODOLOGY OVERVIEW
    • PART 2: ANALYTIC METHODOLOGY FOR DIFFERENT MOLECULAR FEATURES OF GLIOMAS
    • PART 3: ADVANCING PERSONALIZED MEDICINE USING IMAGING GENOMICS AND RADIOMICS
    • PART 4: Potential POWERFUL IMAGING GENOMICS TOOL FOR ENABLING BOTH SPATIAL MAPPING AND DEPICTING HETEROGENEITY—TUMOR HABITAT ANALYSIS
    • PART 5. LIMITATIONS, CHALLENGES TO BE ADDRESSED, AND FUTURE OPPORTUNITIES
    • CONCLUSIONS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • T1WI Signal Distinguishes Brain SFT and Meningioma
  • Brain Tumor Subtyping Image-Based search via MRI
  • Neuroimaging of Erdheim-Chester Disease
Show more BRAIN TUMOR IMAGING

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire