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REVIEW ARTICLE

Imaging Genomics of Glioma Revisited: Analytic Methods to
Understand Spatial and Temporal Heterogeneity

Cymon N. Kersch, Minjae Kim, Jared Stoller, Ramon F. Barajas Jr., and Ji Eun Park

ABSTRACT

SUMMARY: An improved understanding of the cellular and molecular biologic processes responsible for brain tumor development,
growth, and resistance to therapy is fundamental to improving clinical outcomes. Imaging genomics is the study of the relationships
between microscopic, genetic, and molecular biologic features and macroscopic imaging features. Imaging genomics is beginning to
shift clinical paradigms for diagnosing and treating brain tumors. This article provides an overview of imaging genomics in gliomas,
in which imaging data including hallmarks such as IDH-mutation, MGMT methylation, and EGFR-mutation status can provide critical
insights into the pretreatment and posttreatment stages. This article will accomplish the following: 1) review the methods used in
imaging genomics, including visual analysis, quantitative analysis, and radiomics analysis; 2) recommend suitable analytic methods for
imaging genomics according to biologic characteristics; 3) discuss the clinical applicability of imaging genomics; and 4) introduce
subregional tumor habitat analysis with the goal of guiding future radiogenetics research endeavors toward translation into critically
needed clinical applications.

ABBREVIATIONS: AI ¼ artificial intelligence; CE ¼ contrast-enhanced; DCE ¼ dynamic contrast-enhancement; DMG ¼ diffuse midline glioma; H3K27-DMG ¼
histone H3 lysine 27-altered diffuse midline glioma; H3K27me3 ¼ H3 lysine 27 trimethylation; IVIM ¼ intravoxel incoherent motion; LASSO ¼ least absolute
shrinkage and selection operator; PCA ¼ principal component analysis; rCBV ¼ relative CBV; TERT ¼ telomerase reverse transcriptase; TME ¼ tumor microen-
vironment; WHO ¼ World Health Organization

Imaging genomics is the study of the relationships between mi-
croscopic, genetic, and molecular biologic features and macro-

scopic imaging features. Imaging genomics is important in CNS
pathologies because tissue sampling faces challenges, including
invasiveness in a critically functioning organ, the feasibility of
intraoperative imaging, technical difficulties in site-specific tissue
sampling, and requirements for study team coordination among
neurosurgeons, radiologists, and pathologists. Through the use of

imaging genomics, we seek to improve the clinical care of patients
by predicting risk and patient outcomes with identification of
noninvasive imaging biomarkers.1 Imaging features can be di-
vided into 2 categories: first, low-dimensional imaging features
that include semantic or qualitative features comprising a stand-
ardized lexicon for the description of tumors (Visually AcceSAble
Rembrandt Images [VASARI]; https://radiopaedia.org/articles/
vasari-mri-feature-set) or a description of tumor morphology (ie,
T2-FLAIR mismatch sign). Second, radiomics features include
high-throughput data that completely cover the range of quantita-
tive features that can be extracted from images such as texture,
shape, and margin gradient.2 Radiomics can be derived from ei-
ther handcrafted or deep learning techniques.3 Radiogenomics is a
subcategory of imaging genomics that is based on radiomics.1,2 In
radiogenomics, imaging features are extracted automatically and
with high throughput, and radiogenomics often requires the use
of a machine learning algorithm for model development.2,4

Imaging genomics is technology-heavy and incorporates
some combination of clinical imaging, “-omic” tissue analyses
with “big data” bioinformatics, and artificial intelligence (AI)
through machine learning algorithms. Imaging genomics has
different methodologic approaches and uses low-dimensional
semantic features and high-dimensional radiomics features.
During cancer development, a few genes undergo distinct

Received July 28, 2023; accepted after revision November 9.

From the Department of Radiation Medicine (C.N.K.), Department of Diagnostic
Radiology (J.S., R.F.B.), Knight Cancer Institute (R.F.B.), and Advanced Imaging
Research Center (R.F.B.), Oregon Health and Science University, Portland, Oregon;
and Department of Radiology and Research Institute of Radiology (M.K., J.E.P.),
Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.

C.N. Kersch and M. Kim are co-first authors.

Ji Eun Park was supported by the National Research Foundation of Korea grant
funded by the Korean government (grant No.: RS-2023-00305153) and Korea Health
Technology R&D Project through the Korea Health Industry Development
Institute, funded by the Ministry of Health & Welfare: HI22C0471. Ramon F. Barajas,
Jr was supported by the National Institutes of Health, National Cancer Institute
K08CA237809, KL2TR002370, and L30CA220897 and Jonathan D1Mark C. Lewis
Foundation.

Please address correspondence to Ji Eun Park, MD, PhD, Department of Radiology
and Research Institute of Radiology, Asan Medical Center, University of Ulsan
College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; e-mail:
jieunp@gmail.com

Indicates article with online supplemental data.

http://dx.doi.org/10.3174/ajnr.A8148

AJNR Am J Neuroradiol 45:537–48 May 2024 www.ajnr.org 537

https://orcid.org/0000-0003-4968-9817
https://orcid.org/0000-0002-5382-9360
https://orcid.org/0000-0002-3558-8372
https://orcid.org/0000-0001-5093-4168
https://orcid.org/0000-0002-4419-4682
https://radiopaedia.org/articles/vasari-mri-feature-set
https://radiopaedia.org/articles/vasari-mri-feature-set
mailto:jieunp@gmail.com
http://dx.doi.org/10.3174/ajnr.A8148


changes in specific locations,5 and identifying these with imag-
ing biomarkers requires distinct radiomics techniques. For
instance, an IDH mutation is an ideal tumor-specific neoanti-
gen that can be assessed with low-dimensional imaging fea-
tures because it is uniform in a given tumor and does not
change with time.6 On the other hand, epidermal growth fac-
tor receptor (EGFR) amplification and MGMT promoter
methylation status are distributed heterogeneously within a
given tumor, and loss of EGFR amplification7 and alterations
of the MGMT promoter methylation status occur during treat-
ment.8 These results necessitate using high-dimensional imag-
ing features including radiomics and deep learning–based
features to spatially discern these heterogeneous biologic
expression patterns. AI is particularly helpful to handle high-
dimensional imaging features as well as large-scale transcrip-
tomics and genomics data.

Imaging genomics can be applicable to many clinical scenar-
ios from diagnosis to treatment-planning and evaluating the
treatment response. For example, it may be applied when tumor
diagnostics are incomplete due to challenges with tissue sampling
or when noninvasively subtyping gliomas on the basis of known
gene expression or mutation patterns, including those associated
with IDH, MGMT, EGFR, and others.9-11 Moreover, imaging
genomics and radiomics have applicability in prognostication,
which can support decision-making of patients and clinicians. Its
applications also extend into evaluating the tumor microenviron-
ment and determining how this microenvironment changes with
time in response to treatment. Finally, imaging genomics and
especially radiomics may provide novel tools to evaluate the
response to these therapies when it is challenging to distinguish
posttreatment changes such as pseudoprogression, tumor pro-
gression, and treatment complications such as radionecrosis.

This article will achieve the following: 1) review the methods
used in imaging genomics including visual analysis, quantitative
analysis, and radiomics analysis; 2) recommend suitable analytic
methods for imaging genomics according to biologic characteris-
tics; 3) discuss the clinical applicability of imaging genomics; and
4) introduce subregional tumor habitat analysis with the goal of
guiding future radiogenetics research endeavors toward transla-
tion into critically needed clinical applications.

PART 1: METHODOLOGY OVERVIEW
An overview of the methodology and clinical utility of imaging
genomics is shown in Fig 1. Imaging genomics studies are usually
based on 3 main methodologies: First, physiologic information
from multiparametric MR imaging, usually based on low-dimen-
sional features, can be used. Second, modeling and validation
using high-dimensional data including radiomics and deep
learning can be performed. Third, voxelwise spatial mapping
and clustering using voxels from multiparametric MR imaging
can be used. The main role of imaging genomics is prediction of
genomics, including depiction of intratumoral heterogeneity,
prediction of molecular subtypes, or colocalization and in situ
validation. Depiction of intratumoral heterogeneity, which is of-
ten achieved with radiomics, facilitates understanding of micro-
scopic genetic features. Prediction of molecular and genetic
mutations in individuals or groups facilitates understanding of
molecular and biologic features. Colocalization and in situ vali-
dation, which are often achieved with voxel-wise clustering and
spatial mapping, facilitate understanding of macroscopic features
to predict tumor aggressiveness, tumor infiltration, and vascular-
ity. Further clinical utilities for imaging genomics include prog-
nostication for patient consultation and determination of the

FIG 1. Sample workflow for imaging genomics studies to integrate glioma imaging phenotypes with molecular features. In imaging genomics
studies of glioma, pretreatment MR imaging sequences are typically obtained. Next, tumor tissue is collected, sometimes under image guidance
in relation to specific imaging features, and then subjected to various types of genomics, transcriptomics, and proteomics analyses. Both the
imaging and molecular data require preprocessing and normalization steps before they are integrated to assess the associations between imag-
ing phenotypes and genomic and molecular features. Finally, these associations are interpreted in the context of the clinical disease and known
complex biologic processes and pathways.

538 Kersch May 2024 www.ajnr.org



therapeutic implications of treatment-planning for chemotherapy
and radiation therapy. A detailed process of structuring an imag-
ing genomics study is summarized as follows.

Data Collection
Imaging data are collected through standard and specialized
protocols that provide detailed information about the size,
shape, location, and other imaging characteristics of the tumor,
while biologic data collected from tissue samples reveal the
genomic/transcriptomic profile of the tumor. Imaging data
variability must be considered and harmonized across different
imaging vendors and institutions because it greatly affects the
reproducibility of imaging features. Imaging-acquisition protocols
need to be unified across multiple centers to conduct a prospective
study. For retrospective analysis, a phantom study, test-retest anal-
ysis, quantitative maps, or value normalization can be used. The
detailed methodology is explained elsewhere.12 For tumor charac-
teristics that are binary (such as the presence or absence of an
IDH mutation) and that do not change across a tumor, tumor
tissue samples do not need to be spatially colocalized with the
specific imaging features with which they are being correlated.
Publicly available databases of genomics and transcriptomic
data and their correlated clinical radiographs have resulted in
some of the first large number of cohort studies in this field, for
instance, the National Cancer Institute’s large The Cancer
Genomic Atlas was expanded to include a companion imaging
database, The Cancer Imaging Archive, which has led to hun-
dreds of publications in oncology exploring radiogenomics
(https://www.cancerimagingarchive.net). However, for biologic
features that vary over regions of a single tumor, spatially colocal-
ized data (imaging and biologic) need to be collected from brain
tumors. Precise colocalization of the tissue and imaging data is
critical to permit these correlates, and this can be achieved
through intraoperative stereotactic tissue sampling.13,14

Imaging Data Preprocessing
Once the data are collected, they undergo preprocessing steps to
ensure their quality and suitability for postprocessing. These may
involve tasks such as resizing the images to a consistent resolu-
tion, normalizing the intensity values, removing artifacts or noise,
and aligning the images in a standardized orientation.

ROI Segmentation
Once the images are acquired, an ROI is defined. The ROI is typi-
cally used as a bounding method (manual or automated segmenta-
tion) that prevents analytic extension into normal brain structures.
This step ensures that subsequent analyses are specifically con-
ducted on the tumor region.

Image Processing and Feature Extraction (especially,
radiomics)
Once the imaging data are collected, they can undergo any num-
ber of image-processing steps to extract relevant features from
the precise location of the colocalized tissue sample. Imaging fea-
tures can be obtained from anatomic images (T1, T2-weighted,
FLAIR), diffusion-weighted images, perfusion-weighted images,
and metabolic images. Relevant imaging features according to
genetic/molecular features are demonstrated in Part 2. In

radiomics, these include intensity-based features (voxel inten-
sities), shape-based features (geometric properties), texture-based
features (spatial patterns), and spatial-based features (relation-
ships between different regions).

Biologic Analysis
The tissue data are simultaneously processed and analyzed to
identify genetic mutations, gene-expression patterns, methylation
patterns, and other biologic alterations. This direct tissue analysis
provides information about the molecular characteristics and
nuanced tumor biology, which can include potential therapeutic
targets. Further subanalyses of the gene-expression profile can
provide additional tissue features such as an estimation of the
abundance of member cell types in a mixed cell population with
cellular deconvolution techniques.

Data Integration and Analysis
The extracted imaging features and biologic data are then inte-
grated and analyzed together to define biologic processes that are
correlated with imaging features or phenotypes. The detailed
integration analysis is explained in Part 2 regarding molecular
features. Supervised learning including modeling is the most
common method to predict 1 or 2 genomic mutations and
molecular features. In radiomics, statistical and machine learning
techniques including dimensionality reduction methods, feature
selection techniques, or modeling approaches are used. When
one uses AI, the choice of model depends on the specific task and
available data. For example, convolutional neural networks can
achieve image-analysis tasks by learning patterns and features
from the input training images. The training process adjusts the
internal parameters of the model to minimize the differences
between the predicted and ground truth tumor annotations.
After training, the model is evaluated using a separate validation
data set. This step assesses the performance and generalizability
of the model and may involve adjusting hyperparameters (eg,
learning rate, regularization), exploring different model architec-
tures, or augmenting the training data with transformations or
variations. For validation, external validation is highly recom-
mended to achieve the generalizability of the model. The detailed
radiologic and statistical perspectives are summarized else-
where.12 Other analytic methods are as follows: Correlation plots
or unsupervised learning methods including clustering are
adopted to demonstrate heterogeneity to demonstrate correlation
among multiple different genomic mutations and molecular fea-
tures. To perform a prognostication or outcome study using
imaging genomics, one can perform time-to-event analysis.

PART 2: ANALYTIC METHODOLOGY FOR DIFFERENT
MOLECULAR FEATURES OF GLIOMAS
The spatial distribution of tumor molecular features has a substan-
tial influence on the choice of analytic methodology (Fig 2). The
biologic background of the molecular features of gliomas is sum-
marized with a review of current analytic methodologies (Online
Supplemental Data).4,15,16 The analytic approaches that best reflect
the spatial distribution of given molecular features are proposed.
Ubiquitously expressed biologic features such as IDH mutations
may be assessed using low-dimensional, lesion-wide analysis.
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Conversely, for molecular features with fractional mutation
(ie, CDKN2A/B) or different subtypes of molecular alterations
(ie, H3K27-altered), a histogram analysis or high-dimensional
analysis using imaging-based computational techniques such as
radiomics and deep learning with a supervised approach may be
the most appropriate. For heterogeneous and dynamic molecular
features (ie, MGMT promoter methylation, EGFR amplification),
radiomics and deep learning with an unsupervised approach may
best reflect spatial and temporal heterogeneity.

Imaging Genomics for Ubiquitously Expressed Biologic
Features
Biologic Features of IDH Mutations. IDH mutation in glioma is
ubiquitously expressed in all tumor cells in the IDH-mutant
type.16 In the World Health Organization (WHO) CNS5 edition
published in 2021, secondary glioblastoma or IDH-mutant glio-
blastoma is no longer listed.16 Regardless of the histologic grade,
tumors with IDH wild-type are now assigned as “(molecular) glio-
blastoma, IDH-wild-type, CNS grade grade 4.” Thus, distinguish-
ing IDH-mutational status becomes more important because it is
a strong prognostic factor for survival.17

Reviewof Current AnalyticMethodologies.
Visual analysis of various imaging fea-
tures has been shown to differ according
to IDH1-mutation status as character-
ized by standardized imaging lexicons
such as VASARI.18 In addition, the T2-
FLAIR mismatch sign is a validated
imaging sign for IDH-mutant status in
patients with diffuse adult-type glioma,
specifically in diffuse astrocytoma, IDH-
mutant type without the 1p/19q codele-
tion. The T2-FLAIR mismatch sign is
expressed in the entire tumor, which
shows entirely homogeneous high sig-
nal intensity on T2-weighted images
and low signal intensity in the internal
portion on FLAIR images. The T2-
FLAIR mismatch sign has been previ-
ously described in detail.19-21 Imaging
genomics clinicopathologic analysis
suggests that the presence of tumor
microcystic change is a causative etiol-
ogy of FLAIR suppression.22 The posi-
tive predictive value of the T2-FLAIR
mismatch sign for IDH-mutation status
was 100% in retrospective cohort stud-
ies of diffuse adult-type gliomas.19,20

There are false-positives for the T2-
FLAIR mismatch sign when it is
observed in other tumors such as dys-
plastic embryogenic tumors23 and pilo-
cytic astrocytoma.24 When a study
design includes all gliomas, both the
positive predictive value and specificity
of the T2-FLAIR mismatch sign for
IDH-mutation may decrease.

Advanced physiologic imaging has also been shown to predict
IDH-mutation status such as DSC,25 dynamic contrast-enhance-
ment (DCE),26 intravoxel incoherent motion (IVIM),26 and meta-
bolic imaging such as amide proton transfer–weighted imaging.27

While CBF is not useful in distinguishing IDH-mutation status,
the medians of the parameters derived from DSC and IVIM such
as the CBV, microcirculation perfusion coefficient, and simplified
perfusion fraction were lower in IDH-mutant gliomas.25 In addi-
tion, the median lower fractional volume of intravascular space
using a distributed parameter model showed the highest diagnos-
tic performance among DCE-derived parameters, including those
based on the Tofts model.26 Such findings may support the lower
vascularity, permeability, and flow in the tumor microenviroment
of IDH-mutant gliomas due to resistance to neoangiogenesis by
regulation of hypoxia-inducible factor a.28 In terms of chemical
exchange saturation transfer (CEST) imaging metrics, the median
amide/amine signal ratio and levels of amine signal differentiated
IDH wild-type from the pooled IDH-mutant gliomas, supporting
the relevance of tumor acidity in differentiating gliomas.27

Supervised learning approaches with radiomics features and
deep learning features have been used to predict IDH-mutation

FIG 2. Differences in the biologic distribution of genes and molecular subtypes in glioma and
suggested analytic methods of imaging genomics. For genes and molecular subtypes that are sta-
ble and ubiquitous, imaging genomics using averaged values or a simple imaging phenotype such
as T2-FLAIR mismatch sign is applicable. For genes and molecular subtypes with a skewed distribu-
tion or those that include different subtypes, a histogram analysis or supervised learning using AI
or radiomics is applicable. For genes and molecular subtypes that are dynamic and heterogene-
ous, pattern-wise analysis using unsupervised learning or subregional analysis to explain intratu-
moral heterogeneity needs to be applied.
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status with multiparametric MR imaging.29 This approach often
requires large, highly curated data sets. On the basis of the glioma
The Cancer Genomic Atlas cohort, a prediction model of IDH-
mutation status using multiple machine learning classifiers exhib-
ited a preoperative accuracy of up to 88.9%.30 In terms of AI, use of
convolutional neural networks has demonstrated an accuracy of
94% for IDH-1 mutation status and 92% for 1p/19q codeletion
status.31

Proposed Analytic Methodology. For ubiquitously expressed
biologic features such as IDHmutations, a lesion-wide visual ana-
lytic approach that captures the whole tumor and provides direct
and intuitive information is proposed. The ubiquitous expression
of IDH mutations in all tumor cells negates the need to reflect
intratumoral heterogeneity, making histogram or radiomics
approaches excessive.

The T2-FLAIR mismatch sign, when applied appropriately, is
a representative visual analytic approach that is simple to use and
has been extensively validated in real-world clinical settings. For
physiologic imaging, the median or mean values from physiologic
imaging modalities including DSC, DCE, IVIM, and amide pro-
ton transfer–weighted imaging from the entire tumor ROI are
suitable for analyzing this ubiquitous expression of genetic muta-
tion. Supervised learning using high-dimensional imaging features
to classify IDH-mutant tumors is feasible, but future research
should be directed to proposing and validating a simple, visual, or
statistical analytic approach that enables lesion-wide reflection of
ubiquitously expressed biologic features.

Imaging Genomics for Subtypes with a Skewed Distribution
Intratumoral Heterogeneity of CDKN2A/B. Certain molecular
features of gliomas are characterized by fractional mutations or
different subtypes of molecular alterations. CDKN2A/B is a tu-
mor-suppressor gene that, when homozygously deleted, promotes
biologic aggressiveness in IDH-mutant gliomas.32 In the WHO
CNS classification published in 2021, a CDKN2A/B homozygous
deletion results in a CNS WHO grade of 4 for IDH-mutant
tumors, even without microvascular proliferation or necrosis.16

Thus, grading is no longer entirely histologic, and CDKN2A/B sta-
tus becomes important. The percentage of cells with homozygous
deletion across all IDH-mutant tumors is bimodal, with a median
value of,10%.33 However, this distribution is skewed toward his-
tologically high-grade tumors having.50% deletion.

Intertumoral Heterogeneity of Histone H3 Lysine 27-Altered
Diffuse Midline Glioma. Histone H3 lysine 27-altered diffuse
midline glioma (H3K27-DMG) is a unique molecular subgroup
that includes subtypes with an alternative mechanism for the loss
of H3K27 trimethylation, such as additional somatic genetic alter-
ations of receptor tyrosine kinases, cell cycle regulators, mediators
of DNA repair, and/or phosphoinositide 3-kinase/protein kinase
B/mammalian target of rapamycin signaling.34 The 2021 WHO
classification adopted the revised designation “diffuse midline gli-
oma, H3K27-altered” to include subtypes of diffuse midline gli-
oma (DMG) with an alternative mechanism for the loss of H3K27
trimethylation. These include 4 subtypes of DMGs: 1) H3.3 p.
K28M (K27M)-mutant, 2) H3.1 or 3.2 p.K28M (K27M)-mutant,

3) H3-wild-type with EZHIP overexpression, and 4) EGFR-mu-
tant, which mainly includes bithalamic diffuse gliomas that pres-
ent H3K27M or EZHIP overexpression together with strong
enrichment in EGFR alterations. The H3K27-altered type is char-
acterized by low intratumoral heterogeneity because the K27M-
mutant variant causes a global reduction in levels of H3 lysine 27
trimethylation (H3K27me3).35 In addition, EZHIP overexpression
results in H3K27me3 global reduction.36

Review of Current Analytic Methodologies. There are a limited
number of studies predicting CDKN2A/B status, and most have
used supervised learning approaches.37,38 A recent study of imag-
ing genomics for CDKN2A/B showed a trend toward an infiltra-
tive pattern, a larger maximal diameter, and a higher value of the
95th percentile of normalized CBV being independent predictors
of CDKN2A/B.39 Imaging features of CDKN2A/B deletion may
overlap with those implying tumor aggressiveness.

For H3K27M-DMG, imaging features have been character-
ized by comparing the mean values or histogram parameters of
ADC or relative CBV (rCBV).40,41 Imaging features of H3K27-
altered tumors have various presentations (high intertumoral het-
erogeneity), but most tumors show relatively uniform signals
(low intratumoral heterogeneity).42 Metabolic imaging with MRS
has demonstrated significantly higher citrate and glutamine levels
in H3K27-DMG tumors.43

Proposed Analytic Methodology. For fractional mutation of
CDKN2A/B, the proposed analytic methodology is histogram
analysis. To depict intratumoral heterogeneity of CDKN2A/B,
histogram parameters of skewness, kurtosis, and percentile values
are useful. By means of radiomics, intratumoral heterogeneity
can be captured, and CDKN2A/B can be diagnosed using super-
vised learning. Using the median or mean value derived from his-
tograms of physiologic imaging biomarkers, imaging prediction
of CDKN2A/Bmay be difficult because there is no clear technical
cutoff, and IDH-mutant tumors evolve toward homozygous dele-
tion across time.

For H3K27-altered DMG, the imaging features have various
presentations (high intertumoral heterogeneity), but most tumors
show relatively uniform signals (low intratumoral heterogene-
ity).42 Pattern-wise diagnosis is helpful to depict intertumoral
heterogeneity of H3K27-altered DMG. Metabolic imaging with
MRS has demonstrated significantly higher citrate and glutamine
levels in H3K27-DMG tumors.43 On the basis of the low intratu-
moral heterogeneity of metabolic/cell signaling alterations, non-
invasive metabolic imaging may provide a method for improved
preoperative diagnosis of tumors with H3K27 alterations.

Imaging Genomics for Subtypes with Dynamic and
Heterogeneous Biologic Features
Biologic Background of MGMT Methylation and EGFR-Mutation
Status. Some molecular features of gliomas have spatial and tem-
poral heterogeneity with evolution of the mutational status with
treatment. DNA promoter methylation of the MGMT gene is a
clinically important feature that is predictive of temozolomide
sensitivity, which is the standard-of-care chemotherapeutic agent
used in the treatment of glioblastoma. Prior investigations have
demonstrated MGMT methylation to be heterogeneous, with
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heterogeneity of methylation patterns across the MGMT 5 0

CpG island, and capable of changing through the course of
therapy.

EGFR amplification and EGFR variant III (EGFRvIII) muta-
tions have both temporal and spatial heterogeneity. EGFRvIII
mutations were detectable only in subclones of the tumor in
EGFR amplification samples of individual patients, which sug-
gested that EGFRvIIImutations are late events in tumor develop-
ment.44 Heterogeneity of EGFRvIII has also been observed at the
protein level. In contrast, wild-type EGFR expression is much
more abundant and lacks the profound heterogeneity observed
with EGFRvIII. This finding indicates that both the occurrence
and disappearance of EGFR mutations are frequent processes
that significantly contribute to tumor heterogeneity.

Review of Current Analytic Methodologies. Radiomics and deep
learning–based approaches involve the extraction of hundreds of
quantitative features from images.4 Typically, machine-learning
techniques are subsequently applied to the extracted radiomics
features. These techniques use 2 main methods:45 1) dimensional-
ity reduction and feature selection via unsupervised approaches,
and 2) association analysis with $1 specific outcome via super-
vised approaches.

MGMT Promoter Methylation Status. Using supervised learning
methods, numerous studies have assessed the correlation of con-
ventional MR imaging features from T1-weighted, T2-weighted,
FLAIR, and T1-weighted gadolinium contrast-enhanced (CE-
T1WI) images withMGMTmethylation status. Published studies
have reported a wide range of predictive accuracy ranging from
60% to .80%.46-49 For dimensionality reduction and feature
selection, algorithms such as maximum redundancy and maxi-
mum relevance46 or least absolute shrinkage and selection opera-
tor (LASSO) have been used. Fusion radiomics signatures
determined by logistic regression modeling of single radiomics
signatures selected from each sequence and habitat have been
shown to predict survival.46 In particular, convolutional neural
networks–based architectures have been validated or further
developed with transfer learning to determine MGMT promoter
methylation status.48,49

EGFR Amplification Status. Histogram analysis and supervised
learning approaches (machine learning) with radiomics have
been used to predict EGFR amplification in glioblastomas and
have achieved a diagnostic accuracy of up to 78%.50-53 Measures
such as the maximum rCBV, relative peak height, and percentage
signal recovery from DSC have been correlated with EGFRmuta-
tion status.53 Logistic regression models with or without dimen-
sionality reduction and feature selection via LASSO using
conventional images such as T2WI, CE-T1WI, FLAIR, and DWI
have been most commonly used.51,52

Proposed Analytic Methodology. For genes exhibiting both spa-
tial and temporal heterogeneity, unsupervised approaches to
dimensionality reduction and feature selection are more beneficial
than supervised approaches. The 2 most commonly used unsuper-
vised approaches are cluster analysis and principal component
analysis (PCA).2 Genomics data are often multidimensional.

Cluster analysis is a method that sorts through genomics data
and allows better visualization through heatmaps.54 A heatmap
can readily display trends in data by simultaneously accounting
for each dimension of the genomic data fed into the computa-
tional pipeline. PCA also explores multidimensional genomics
data and determines the impact a specific dimension of the data
has on variation in the data set as a whole. This process shows
the likelihood of contribution from a specific attribute com-
pared with the contributions of other dimensions in the data.55

Both cluster analysis and PCA allow the analysis of contribu-
tions from individual vectors within an extensive basis of
vectors.

One good example of unsupervised learning for MGMT pro-
moter methylation status is a study that used dimensionality
reduction with unsupervised learning to account for the intra-
and intertumoral heterogeneity ofMGMT. By means of anatomic
FLAIR and CE-T1WI features, K-means clustering of radiomics
features obtained 3 distinct and reproducible imaging subtypes of
glioblastoma with molecular characteristics, including MGMT
promoter methylation status.47

For EGFR amplification status, unsupervised learning using
regional information has been studied. Intratumoral heterogene-
ity can be depicted by conducting separate regional-based analy-
ses of imaging biomarkers, including enhancing tumors,
nonenhancing tumors, necrosis, and edema. In a multiparametric
MR imaging and multisegmentation study, the spatial tumor pat-
tern (location) and intensity distribution obtained from histo-
grams of T2-FLAIR, ADC, and rCBV values were compared
between EGFR variant III-positive (EGFRVIII1) versus EGFR
variant III-negative (EGFRvIII�) tumors. EGFRvIII1 tumors
displayed a higher rCBV, lower ADC, higher fractional anisot-
ropy, lower T2-FLAIR, and a distinctive spatial pattern (Fig 3).56

EGFRvIII1 tumors had a more isotropic distribution of rCBV in
enhancing and nonenhancing tumors and a low rCBV in perine-
crotic tissue. This finding was observed with PCA of complex
time-signal-intensity curves from DSC imaging of the peritu-
moral region.57 This unsupervised learning approach showed
that EGFRvIII1 tumors had more homogeneity in time-signal-
intensity curve–based features between immediate and distant
peritumoral ROIs, while greater heterogeneity was observed in
EGFRvIII tumors.

PART 3: ADVANCING PERSONALIZED MEDICINE
USING IMAGING GENOMICS AND RADIOMICS
The standard-of-care treatment for glioblastoma includes upfront
maximal safe resection followed by concurrent radiation therapy
and temozolomide and then adjuvant temozolomide.58 For
patients with a good performance status, their treatment often
includes the use of tumor-treating fields after concurrent chemo-
radiation. With this treatment paradigm, patients with glioblas-
toma have a median survival of 20.9months.59 However, there is
substantial variation in individual outcomes, with survival rang-
ing from a few weeks to many years. Imaging genomics has dem-
onstrated clinical feasibility in selecting subgroups of patients
who are likely to benefit from specific therapies, including immu-
notherapies and targeted molecular therapies, and in improving
our ability to assess treatment responses.
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Surgery
Maximal safe surgical cytoreduction is unequivocally linked to
improved clinical outcomes for patients with glioblastoma. However,
the highly infiltrative growth pattern often leads to involvement of
eloquent brain regions and challenges discerning areas with the
highest risk of tumor recurrence. This feature makes achieving
“negative” surgical margins difficult, if not impossible. Assessing
tumor infiltration by using imaging genomics is an important
issue and needs to be validated with spatial mapping. A colocaliza-
tion study demonstrated imaging correlates of tumor infiltration
using anatomic, perfusion, diffusion images and O-(2-[18F]-fluo-
roethyl)-L-tyrosine ([18F] FET) PET and subsequent multiregion
stereotactic biopsies.14 In nonenhancing gliomas, FLAIR had the
highest diagnostic accuracy. Recently, an optical imaging tech-
nique and fiber laser-based stimulated Raman histology showed
the potential to noninvasively predict residual infiltrative glioma.60

This finding has the potential to assist in personalizing resection
plans on the basis of the individual risk of local recurrence, while
concurrently minimizing the risk of neurologic deficits and pre-
serving function status. Although radiomics has begun to explore
imaging correlates of tumor cellularity61 and the extent of infiltra-
tion,62 spatial mapping and colocalization are difficult to achieve
for radiomics because this technique demonstrates heterogeneity
and complexity, and spatial information is lost.

Temozolomide
Temozolomide is used in glioblastoma treatment alongside radia-
tion therapy. However, response to this agent varies among patients
and depends on individual tumor biology. Patients with methylated

MGMT promoters show an enhanced response to temozolo-
mide.9,10 Therefore, noninvasive determination of MGMT meth-
ylation status using imaging genomic applications can predict
temozolomide sensitivity. Imaging genomics methodologies to
assess MGMT promoter methylation have been previously dis-
cussed herein. Similarly, the gene telomerase reverse transcriptase
(TERT), which is sometimes mutated in glioblastoma, impacts
temozolomide and radiation sensitivity. A recent study created
an optimized radiomics score using a LASSO regression model
and multivariate analysis to predict TERT promoter mutations.63

This model, which combines the radscore with patient character-
istics, demonstrated high prediction accuracy.

Radiation Therapy
Radiation, a standard treatment for glioblastoma and many glio-
mas, may be optimized through radiomics. A recent review arti-
cle64 demonstrated that a radiomics-guided radiation therapy
approach may aid radiation therapy planning by using radiomics
volumetric signature maps and radiomics subvolumes. This
approach would further enable personalization of radiation treat-
ment plans based on patient-specific anatomic and tumor charac-
teristics using radiomics. Radiomics and imaging genomics could
offer novel biomarkers for variable inter- and intratumoral radia-
tion sensitivity, guiding individualized dose/fractionation plans
and dose painting across a tumor.

Immunotherapy
Immunotherapies, primarily targeting programmed cell death
protein 1/programmed death-ligand 1, or anti-cytotoxic T-

FIG 3. Illustration of the use of an unsupervised learning method and a subregional analysis to account for an EGFRvIII mutation. A, Histogram
analysis of multiparametric MR imaging enables depiction of the differences between the EGFRvIII-mutant and wild group (reproduced with per-
mission from Bakas et al57). B, For EGFRvIII-mutant tumors, there is no heterogeneity in the perfusion pattern distribution between the far and
near ROIs, while there is considerable heterogeneity between the far and near ROIs for patients who have EGFRvIII– tumors (reproduced with
permission from Akbari et al56).
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lymphocyte-associated protein 4, use the adaptive immune system
against tumor cells. Unfortunately, these therapies have shown lit-
tle benefit in improving survival of patients with glioblastoma to
date. Two recently published international randomized Phase III
trials evaluating the efficacy of adding nivolumab to the treatment
of newly diagnosed glioblastoma with and without MGMT pro-
moter methylation showed no benefit over the standard-of-care
treatment.65,66 The ineffectiveness of immune checkpoint block-
ade in glioblastoma could be due to decreased CNS immune sur-
veillance, low tumor mutation burden, poor BBB penetration, or
insufficient immunologic response to glioblastomas. However,
some glioblastoma subtypes may respond better to immune-mod-
ulating therapeutics. One randomized control study showed that
patients who received neoadjuvant and/or adjuvant therapy with
pembrolizumab had significantly extended overall survival among
patients with recurrent glioblastoma.67 Imaging genomics and
radiomics may provide insight into more immunogenic glioblas-
tomas that could have heightened sensitivity to immune-modulat-
ing therapies. One imaging study used radiomics to characterize
tumor macrophage infiltration within the tissue microenviron-
ment, which plays a critical role in the tumor-immune interface.68

A recent review elaborated on how radiomics and imaging pheno-
types correlate with the immune microenvironment of gliomas,
their applications in immunotherapy era, and ongoing challenges
in the field.69

PART 4: POTENTIAL POWERFUL IMAGING
GENOMICS TOOL FOR ENABLING BOTH SPATIAL
MAPPING AND DEPICTING HETEROGENEITY—TUMOR
HABITAT ANALYSIS
When assessing the translational utility of imaging genomics to
the previously discussed clinical diagnostic and treatment path-
ways, it is critically important at the methodologic level to
account for the vast intratumoral heterogeneity that these
tumors exhibit. Imaging analyses that use supervised learning
with radiomics or deep learning features are limited for biologic
validation for 3 reasons: First, the end point of the classifier is
singular for radiomics using supervised learning, which does
not consider any heterogeneity. Second, there is a danger of
overfitting or overinterpreting the derived models for super-
vised learning.70 Third, radiomics depicts heterogeneity and
complexity within a given ROI, in which any spatial information
is lost. Pattern-wise analysis using unsupervised learning may
reduce dimensionality and the risks of overfitting, but regional
biologic validation is ultimately needed.70

Tumor habitat analysis uses spatially oriented “voxels.”
Grouping “similar” voxels together (parcellation) may define
multiple subregions with a common biology that respond differ-
entially to therapy or drive progression.71 Parcellation methods
include either an a priori assumption of a binary threshold, a ge-
ographic assumption, or a data-driven analysis using a cluster-
ing method. Tumor habitat analysis is in line with existing
methods of imaging genomics, including subregions or subvo-
lumes of a tumor or signature map. This method enables depic-
tion of intratumoral heterogeneity similar to that of radiomics
as well as spatial mapping and colocalization for further biologic
validation. By means of subregions or subvolumes, tumor habitat

analysis may guide imaging-guided treatment-planning and pre-
dict localization of tumor recurrence site. Below is a description
of studies demonstrating use cases (specific situations or scenarios)
of tumor habitat analysis are utilized.

Depiction of the Tumor Microenvironment Using Tumor
Habitat Analysis
A data-driven analysis of clustering demonstrated tumor subre-
gions with distinct biology and pathologic correlations with the
tumor microenvironment (TME).71 Figure 4 explains the differ-
ence between radiomics-based supervised learning methods and
voxelwise unsupervised learning (clustering) methods for tumor
habitat analysis. These data-driven approaches have successfully
distinguished viable tumors from nonviable tumors using multi-
parametric MR imaging and validated the method against H&E
histology.72,73

In glioblastoma, tumor habitat analysis using multiparamet-
ric MR imaging with diffusion-weighted and perfusion-
weighted imaging has been conducted with a voxel-based clus-
tering method.74 The process is assisted by deep learning–based
segmentation, which enables reproducible tumor delineation,
and the voxels containing physiologic information—the ADC
reflecting cellularity and the rCBV reflecting vascular density—
can be extracted within the ROI.

Potential Utility of Tumor Habitat Analysis
Virtual Biopsy and Radiogenomics. Voxelwise clustering and tu-
mor habitat analysis enable the establishment of distinct functional
regions with spatial information and the spatial coregistration of
the images and corresponding histologic findings.70 In breast can-
cer, multiparametric MR imaging habitat analysis and coregistered
histology identified biologically validated subregions of hypoxia,
necrosis, and other conditions.75 This result suggests the possibility
that virtual biopsies can depict the most aggressive tumor portion
of the glioma as well as help to predict genetic mutations under
different TMEs. In terms of radiogenomics, tumor heterogeneity is
shaped by both genetic differences and the local microenviron-
ment.76 Due to differences in the tissue architecture and nutrient
and oxygen levels, regional differences in the TME lead to different
selection of subpopulation of tumor cells (clonal selection). For
example, late development of EGFRvIII is correlated with a TME
promoting anabolic metabolism in glioblastoma cells, leading to
alterations in the levels of EGFRvIII expression.76 Depiction of tu-
mor habitats based on hypoxic regions enables investigation of
genetic/molecular alterations per subregion that may enhance the
prediction of certain mutations.

Treatment Monitoring. The most promising clinical application
of tumor habitat analysis is assessing the treatment response.70

Temporal changes in the tumor habitat, the “spatiotemporal habi-
tat,” occur during and after treatment with both spatial and tempo-
ral variation. Following treatment, outcomes can include tumor
response, tumor progression, pseudoprogression, and radiation ne-
crosis or other adverse effects of the anticancer therapies, all of
which could be evaluated with habitat analysis.

Pseudoprogression. Pseudoprogression is thought to represent an
inflammatory response to treatment but radiographically mimics
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tumor growth and thus poses a dilemma for the clinician when
considering a treatment change or pursuing close surveillance. The
feasibility of subregional analysis was shown in differentiating
pseudoprogression on the basis of a voxelwise clustering method
that exhibited better performance than the single parameters of the
ADC or CBV.74 By means of spatiotemporal habitat analysis on
the ADC and CBV, 3 spatial habitats of a hypervascular cellular
(high CBV and low ADC), a hypovascular cellular (low CBV and
low ADC), and a nonviable tissue habitat (low CBV and high
ADC) were identified, and an increase in the hypervascular cellular
(OR, 4.55, P¼ .002) and hypovascular cellular (OR, 1.22, P, .001)
habitats was predictive of tumor progression.77

Prediction of Treatment Response. Spatiotemporal habitats also
assist in monitoring treatment responses in patients with glioblas-
toma.77 On the basis of a spatiotemporal habitat analysis of the
ADC and CBV, a short-term increase in the hypervascular cellu-
lar habitat (hazard ratio, 40.0; P¼ .001) and hypovascular cellular
habitat was significantly associated with shorter progression-free
survival (hazard ratio, 3.78; P, . 001) after concurrent chemora-
diation therapy. Validation using a prospective cohort showed
that an immediate increase in hypovascular cellular tumors after
concurrent chemoradiation therapy was strongly associated with
shorter progression-free survival.77

Comparative Assessment with Current Methodology. By means
of spatially oriented voxels and learning methods, tumor habitat
analysis has the potential to become a powerful tool for imaging
genomics. While traditional radiomics methods offer valuable
insights into tumor heterogeneity, they often fail to account for
spatial information, an area in which habitat analysis excels.
Therefore, tumor habitat analysis is likely to be most beneficial
for accurately distinguishing various intratumoral regions,

thereby enhancing our ability to differentiate between viable and
nonviable tumor areas as well as to discern treatment-induced
changes such as pseudoprogression. However, comparisons with
traditional radiomics methods indicate the need for further stud-
ies to establish the role of habitat analysis, because the specificity
and sensitivity of the latter can be influenced by factors such as
the choice of clustering methods, the quality of input imaging
data, and the presence of overlapping imaging features. Despite
these hurdles, its potential for improving therapeutic decision-
making, predicting prognosis, and monitoring treatment
response makes tumor habitat analysis a promising avenue in
neuro-oncology.

PART 5. LIMITATIONS, CHALLENGES TO BE
ADDRESSED, AND FUTURE OPPORTUNITIES
Imaging genomics is not aimed at replacing actual genomics.
There are features that are only attainable through direct tissue
analysis of genetic data and molecular characteristics that lack
specific imaging features. Furthermore, imaging features overlap
among high-grade gliomas with increased cellularity showing a
low ADC and increased vascularity exhibiting a high rCBV.
Nonetheless, imaging genomics is useful in patients with brain-
stem glioma or deep-located tumors in the pretreatment stage.
With spatial mapping, imaging genomics can become a powerful
noninvasive tool for guiding treatment and treatment monitor-
ing. Surgery and radiation therapy can be guided by demonstrat-
ing an infiltrative tumor component. Timely and noninvasive
diagnosis is possible for the posttreatment stage by enabling local-
ization of viable tumor or tumor progression that requires subse-
quent treatment.

For future studies, different analytic approaches for biologic
features that are ubiquitously expressed, demonstrate skewed
distribution, or display temporal or spatial heterogeneity are

FIG 4. Limitations of radiomics with supervised learning for explaining intratumoral heterogeneity. The TME interacts with genes, and subre-
gions evolve and develop certain genomic mutations. Tumor habitat (subregional) analysis is an analytic method using voxelwise clustering of
multiparametric MR imaging data that maintains the spatial information.
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proposed. Biologic validation, when possible and appropriate,
should be encouraged, and analytic techniques such as molecu-
lar imaging and tumor habitat analysis that enable colocaliza-
tion will prove promising.

CONCLUSIONS
Imaging genomics not only identifies genomic and molecular
alterations noninvasively but also can help with prognostication,
assessing and predicting tumor progression, and guiding therapy
by spatial mapping and localization. In the pretreatment and diag-
nostic stage, different analytic approaches should be applied for
imaging genomics. For ubiquitously expressed genomics features
such as IDH-mutation status, a simple visual evaluation is suffi-
cient. For skewed distribution or intra-/intertumoral heterogene-
ity including CDKN2A/B homozygous deletion or H3K27-altered
status, histogram analysis of physiologic imaging biomarkers or
radiomics with supervised learning methods are suitable. For
dynamic alterations of MGMT promoter methylation or EGFR-
mutation status, unsupervised learning of high-dimensional data
is suitable. In the posttreatment stage, spatial mapping of imaging
genomics has greater clinical implications through tumor habitat
analysis to localize and predict tumor progression and guide ther-
apy. Ultimately, colocalization of imaging genomics and actual pa-
thology will improve this technique and broaden its utility in
patients with glioma.
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