Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleUltra-High-Field MRI/Imaging of Epilepsy/Demyelinating Diseases/Inflammation/Infection

Macro- and Microstructural White Matter Differences in Neurologic Postacute Sequelae of SARS-CoV-2 Infection

Erin E. O’Connor, Rosangela Salerno-Goncalves, Nikita Rednam, Rory O’Brien, Peter Rock, Andrea R. Levine and Thomas A. Zeffiro
American Journal of Neuroradiology December 2024, 45 (12) 1910-1918; DOI: https://doi.org/10.3174/ajnr.A8481
Erin E. O’Connor
aFrom the Department of Diagnostic Radiology & Nuclear Medicine (E.E.O., N.R., T.A.Z.), University of Maryland School of Medicine, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Erin E. O’Connor
Rosangela Salerno-Goncalves
bDepartment of Pediatrics (R.S.-G.), University of Maryland School of Medicine, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nikita Rednam
aFrom the Department of Diagnostic Radiology & Nuclear Medicine (E.E.O., N.R., T.A.Z.), University of Maryland School of Medicine, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rory O’Brien
cLantern Lab (R.O.), Fulton, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter Rock
dDepartment of Anesthesiology (P.R.), University of Maryland School of Medicine, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Peter Rock
Andrea R. Levine
eDepartment of Medicine (A.R.L.), Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas A. Zeffiro
aFrom the Department of Diagnostic Radiology & Nuclear Medicine (E.E.O., N.R., T.A.Z.), University of Maryland School of Medicine, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Taquet M,
    2. Geddes JR,
    3. Husain M, et al
    . 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry 2021;8:416–27 doi:10.1016/S2215-0366(21)00084-5 pmid:33836148
    CrossRefPubMed
  2. 2.↵
    1. Thaweethai T,
    2. Jolley SE,
    3. Karlson EW
    ; RECOVER Consortium, et al. Development of a definition of postacute sequelae of SARS-CoV-2 infection. JAMA 2023;329:1934–46 doi:10.1001/jama.2023.8823 pmid:37278994
    CrossRefPubMed
  3. 3.↵
    1. Schou TM,
    2. Joca S,
    3. Wegener G, et al
    . Psychiatric and neuropsychiatric sequelae of COVID-19—a systematic review. Brain Behav Immun 2021;97:328–48 doi:10.1016/j.bbi.2021.07.018 pmid:34339806
    CrossRefPubMed
  4. 4.↵
    1. Taquet M,
    2. Sillett R,
    3. Zhu L, et al
    . Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry 2022;9:815–27 doi:10.1016/S2215-0366(22)00260-7 pmid:35987197
    CrossRefPubMed
  5. 5.↵
    1. Filley CM
    . White matter dementia. Ther Adv Neurol Disord 2012;5:267–77doi:10.1177/1756285612454323 pmid:22973423
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Filley CM
    . The behavioral neurology of cerebral white matter. Neurology 1998;50:1535–40 doi:10.1212/wnl.50.6.1535 pmid:9633691
    Abstract/FREE Full Text
  7. 7.↵
    1. Gibson EM,
    2. Nagaraja S,
    3. Ocampo A, et al
    . Methotrexate chemotherapy induces persistent tri-glial dysregulation that underlies chemotherapy-related cognitive impairment. Cell 2019;176:43–55.e13 doi:10.1016/j.cell.2018.10.049 pmid:30528430
    CrossRefPubMed
  8. 8.↵
    1. Schmahmann JD,
    2. Smith EE,
    3. Eichler FS, et al
    . Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann N Y Acad Sci 2008;1142:266–309 doi:10.1196/annals.1444.017 pmid:18990132
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Kinnunen KM,
    2. Greenwood R,
    3. Powell JH, et al
    . White matter damage and cognitive impairment after traumatic brain injury. Brain 2011;134:449–63 doi:10.1093/brain/awq347 pmid:21193486
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Ungvari Z,
    2. Toth P,
    3. Tarantini S, et al
    . Hypertension-induced cognitive impairment: from pathophysiology to public health. Nat Rev Nephrol 2021;17:639–54 doi:10.1038/s41581-021-00430-6 pmid:34127835
    CrossRefPubMed
  11. 11.↵
    1. van Velzen LS,
    2. Kelly S,
    3. Isaev D, et al
    . White matter disturbances in major depressive disorder: a coordinated analysis across 20 international cohorts in the ENIGMA MDD working group. Mol Psychiatry 2020;25:1511–25 doi:10.1038/s41380-019-0477-2 pmid:31471575
    CrossRefPubMed
  12. 12.↵
    1. Hickie I,
    2. Scott E,
    3. Wilhelm K, et al
    . Subcortical hyperintensities on magnetic resonance imaging in patients with severe depression–a longitudinal evaluation. Biol Psychiatry 1997;42:367–74 doi:10.1016/S0006-3223(96)00363-0 pmid:9276077
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Catani M,
    2. Ffytche DH
    . The rises and falls of disconnection syndromes. Brain 2005;128:2224–39 doi:10.1093/brain/awh622 pmid:16141282
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Radmanesh A,
    2. Derman A,
    3. Lui YW, et al
    . COVID-19-associated diffuse leukoencephalopathy and microhemorrhages. Radiology 2020;297:e223–27 doi:10.1148/radiol.2020202040 pmid:32437314
    CrossRefPubMed
  15. 15.↵
    1. Wang Y,
    2. Wang Y,
    3. Huo L, et al
    . SARS-CoV-2-associated acute disseminated encephalomyelitis: a systematic review of the literature. J Neurol 2022;269:1071–92 doi:10.1007/s00415-021-10771-8 pmid:34459986
    CrossRefPubMed
  16. 16.↵
    1. Klironomos S,
    2. Tzortzakakis A,
    3. Kits A, et al
    . Nervous system involvement in coronavirus disease 2019: results from a retrospective consecutive neuroimaging cohort. Radiology 2020;297:e324–34 doi:10.1148/radiol.2020202791 pmid:32729812
    CrossRefPubMed
  17. 17.↵
    1. Marcic L,
    2. Marcic M,
    3. Kojundzic SL, et al
    . Personalized approach to patient with MRI brain changes after SARS-CoV-2 infection. J Pers Med 2021;11:442 doi:10.3390/jpm11060442
    CrossRefPubMed
  18. 18.↵
    1. Gershon RC,
    2. Lai JS,
    3. Bode R, et al
    . Neuro-QOL: quality of life item banks for adults with neurological disorders: item development and calibrations based upon clinical and general population testing. Qual Life Res 2012;21:475–86 doi:10.1007/s11136-011-9958-8 pmid:21874314
    CrossRefPubMed
  19. 19.↵
    1. Radloff LS
    . The CES-D scale: a self-report depression scale for research in the general population. App Psychol Meas 1977;1:385–401 doi:10.1177/014662167700100306
    CrossRef
  20. 20.↵
    1. Phetsouphanh C,
    2. Darley DR,
    3. Wilson DB, et al
    . Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol 2022;23:210–16 doi:10.1038/s41590-021-01113-x pmid:35027728
    CrossRefPubMed
  21. 21.↵
    1. Schultheiß C,
    2. Willscher E,
    3. Paschold L, et al
    . The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep Med 2022;3:100663 doi:10.1016/j.xcrm.2022.100663 pmid:35732153
    CrossRefPubMed
  22. 22.↵
    1. Rau A,
    2. Schroeter N,
    3. Blazhenets G, et al
    . Widespread white matter oedema in subacute COVID-19 patients with neurological symptoms. Brain 2022;145:3203–13 doi:10.1093/brain/awac045 pmid:35675908
    CrossRefPubMed
  23. 23.↵
    1. Soriano JB,
    2. Murthy S,
    3. Marshall JC
    , WHO Clinical Case Definition Working Group on Post-COVID-19 Condition, et al. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis 2022;22:e102–07 doi:10.1016/S1473-3099(21)00703-9 pmid:34951953
    CrossRefPubMed
  24. 24.↵
    1. Swartz MD,
    2. DeSantis SM,
    3. Yaseen A, et al
    . Antibody duration after infection from SARS-CoV-2 in the Texas coronavirus antibody response survey. J Infect Dis 2023;227:193–201 doi:10.1093/infdis/jiac167 pmid:35514141
    CrossRefPubMed
  25. 25.↵
    1. Gaser C,
    2. Dahnke R,
    3. Thompson PM, et al
    . CAT–a computational anatomy toolbox for the analysis of structural MRI data. Gigascience 2024;13:giae049
    CrossRefPubMed
  26. 26.↵
    1. O’Connor EE,
    2. Zeffiro TA,
    3. Lopez OL, et al
    . Differential effects of an AIDS defining illness and chronic HIV infection on gray matter volume. Clin Infect Dis 2021;73:e2303–107 doi:10.1093/cid/ciaa1552 pmid:33053187
    CrossRefPubMed
  27. 27.↵
    1. Dhiman S,
    2. Hickey RE,
    3. Thorn KE, et al
    . PyDesigner v1.0: a pythonic implementation of the DESIGNER pipeline for diffusion magnetic resonance imaging. J Vis Exp 2024;207. doi:10.3791/66397
    CrossRef
  28. 28.↵
    1. Fazekas F,
    2. Chawluk JB,
    3. Alavi A, et al
    . MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 1987;149:351–56 doi:10.2214/ajr.149.2.351 pmid:3496763
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Ding T,
    2. Cohen AD,
    3. O’Connor EE, et al
    . An improved algorithm of white matter hyperintensity detection in elderly adults. Neuroimage Clin 2020;25:102151 doi:10.1016/j.nicl.2019.102151 pmid:31927502
    CrossRefPubMed
  30. 30.↵
    1. Mori S,
    2. Oishi K,
    3. Jiang H, et al
    . Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. NeuroImage 2008;40:570–82 doi:10.1016/j.neuroimage.2007.12.035 pmid:18255316
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Jensen JH,
    2. Helpern JA,
    3. Ramani A, et al
    . Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005;53:1432–40 doi:10.1002/mrm.20508 pmid:15906300
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Jensen JH,
    2. Helpern JA
    . MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed 2010;23:698–710 doi:10.1002/nbm.1518 pmid:20632416
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Low RN,
    2. Low RJ,
    3. Akrami A
    . A review of cytokine-based pathophysiology of long COVID symptoms. Front Med (Lausanne) 2023;10:1011936 doi:10.3389/fmed.2023.1011936 pmid:37064029
    CrossRefPubMed
  34. 34.↵
    1. Ho ML,
    2. Rojas R,
    3. Eisenberg RL
    . Cerebral edema. AJR Am J Roentgenol 2012;199:W258–73 doi:10.2214/AJR.11.8081 pmid:22915416
    CrossRefPubMed
  35. 35.↵
    1. de Melo GD,
    2. Perraud V,
    3. Alvarez F, et al
    . Neuroinvasion and anosmia are independent phenomena upon infection with SARS-CoV-2 and its variants. Nat Commun 2023;14:4485 doi:10.1038/s41467-023-40228-7 pmid:37495586
    CrossRefPubMed
  36. 36.↵
    1. Besteher B,
    2. Machnik M,
    3. Troll M, et al
    . Larger gray matter volumes in neuropsychiatric long-COVID syndrome. Psychiatry Res 2022;317:114836 doi:10.1016/j.psychres.2022.114836 pmid:36087363
    CrossRefPubMed
  37. 37.↵
    1. Lu Y,
    2. Li X,
    3. Geng D, et al
    . Cerebral micro-structural changes in COVID-19 patients - an MRI-based 3-month follow-up study. EClinicalMedicine 2020;25:100484 doi:10.1016/j.eclinm.2020.100484 pmid:32838240
    CrossRefPubMed
  38. 38.↵
    1. Qin Y,
    2. Wu J,
    3. Chen T, et al
    . Long-term microstructure and cerebral blood flow changes in patients recovered from COVID-19 without neurological manifestations. J Clin Invest 2021;131:e147329 doi:10.1172/JCI147329
    CrossRefPubMed
  39. 39.↵
    1. Douaud G,
    2. Lee S,
    3. Alfaro-Almagro F, et al
    . SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022;604:697–707 doi:10.1038/s41586-022-04569-5 pmid:35255491
    CrossRefPubMed
  40. 40.↵
    1. Davenport EM,
    2. Apkarian K,
    3. Whitlow CT, et al
    . Abnormalities in diffusional kurtosis metrics related to head impact exposure in a season of high school varsity football. J Neurotrauma 2016;33:2133–46 doi:10.1089/neu.2015.4267 pmid:27042763
    CrossRefPubMed
  41. 41.↵
    1. Chung S,
    2. Chen J,
    3. Li T, et al
    . Investigating brain white matter in football players with and without concussion using a biophysical model from multishell diffusion MRI. AJNR Am J Neuroradiol 2022;43:823–28 doi:10.3174/ajnr.A7522 pmid:35589140
    Abstract/FREE Full Text
  42. 42.↵
    1. Alves R,
    2. Henriques RN,
    3. Kerkelä L, et al
    . Correlation tensor MRI deciphers underlying kurtosis sources in stroke. Neuroimage 2022;247:118833 doi:10.1016/j.neuroimage.2021.118833 pmid:34929382
    CrossRefPubMed
  43. 43.↵
    1. Wang JJ,
    2. Lin WY,
    3. Lu CS, et al
    . Parkinson disease: diagnostic utility of diffusion kurtosis imaging. Radiology 2011;261:210–17 doi:10.1148/radiol.11102277 pmid:21771952
    CrossRefPubMed
  44. 44.↵
    1. Rong Y,
    2. Xu Z,
    3. Zhu Y, et al
    . Combination of quantitative susceptibility mapping and diffusion kurtosis imaging provides potential biomarkers for early-stage Parkinson’s disease. ACS Chem Neurosci 2022;13:2699–708 doi:10.1021/acschemneuro.2c00321 pmid:36047877
    CrossRefPubMed
  45. 45.↵
    1. Shi W,
    2. Qu C,
    3. Wang X, et al
    . Diffusion kurtosis imaging combined with dynamic susceptibility contrast-enhanced MRI in differentiating high-grade glioma recurrence from pseudoprogression. Eur J Radiology 2021;144:109941 doi:10.1016/j.ejrad.2021.109941 pmid:34735828
    CrossRefPubMed
  46. 46.↵
    1. Budde MD,
    2. Frank JA
    . Neurite beading is sufficient to decrease the apparent diffusion coefficient after ischemic stroke. Proc Natl Acad Sci U S A 2010;107:14472–77 doi:10.1073/pnas.1004841107 pmid:20660718
    Abstract/FREE Full Text
  47. 47.↵
    1. Raab P,
    2. Hattingen E,
    3. Franz K, et al
    . Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Radiology 2010;254:876–81 doi:10.1148/radiol.09090819 pmid:20089718
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. Steven AJ,
    2. Zhuo J,
    3. Melhem ER
    . Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain. AJR Am J Roentgenol 2014;202:W26–33 doi:10.2214/AJR.13.11365 pmid:24370162
    CrossRefPubMedWeb of Science
  49. 49.↵
    1. Zhuo J,
    2. Xu S,
    3. Proctor JL, et al
    . Diffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury. NeuroImage 2012;59:467–77 doi:10.1016/j.neuroimage.2011.07.050 pmid:21835250
    CrossRefPubMed
  50. 50.↵
    1. Thakur KT,
    2. Miller EH,
    3. Glendinning MD, et al
    . COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain 2021;144:2696–708 doi:10.1093/brain/awab148 pmid:33856027
    CrossRefPubMed
  51. 51.↵
    1. Matschke J,
    2. Lütgehetmann M,
    3. Hagel C, et al
    . Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol 2020;19:919–29 doi:10.1016/S1474-4422(20)30308-2 pmid:33031735
    CrossRefPubMed
  52. 52.↵
    1. Fernández-Castañeda A,
    2. Lu P,
    3. Geraghty AC, et al
    . Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell 2022;185:2452–2468.e16 doi:10.1016/j.cell.2022.06.008 pmid:35768006
    CrossRefPubMed
  53. 53.↵
    1. Benedetti F,
    2. Palladini M,
    3. Paolini M, et al
    . Brain correlates of depression, post-traumatic distress, and inflammatory biomarkers in COVID-19 survivors: a multimodal magnetic resonance imaging study. Brain Behav Immun Health 2021;18:100387 doi:10.1016/j.bbih.2021.100387 pmid:34746876
    CrossRefPubMed
  54. 54.↵
    1. Petersen M,
    2. Nägele FL,
    3. Mayer C, et al
    . Brain imaging and neuropsychological assessment of individuals recovered from a mild to moderate SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2023;120:e2217232120 doi:10.1073/pnas.2217232120 pmid:37220275
    CrossRefPubMed
  55. 55.↵
    1. Shan ZY,
    2. Kwiatek R,
    3. Burnet R, et al
    . Progressive brain changes in patients with chronic fatigue syndrome: a longitudinal MRI study. J Magn Reson Imaging 2016;44:1301–11 doi:10.1002/jmri.25283 pmid:27123773
    CrossRefPubMed
  56. 56.↵
    1. Papadopoulou A,
    2. Müller-Lenke N,
    3. Naegelin Y, et al
    . Contribution of cortical and white matter lesions to cognitive impairment in multiple sclerosis. Mult Scler 2013;19:1290–96 doi:10.1177/1352458513475490 pmid:23459568
    CrossRefPubMed
  57. 57.↵
    1. Dowling JW,
    2. Forero A
    . Beyond good and evil: molecular mechanisms of type I and III IFN functions. J Immunol 2022;208:247–56 doi:10.4049/jimmunol.2100707 pmid:35017214
    Abstract/FREE Full Text
  58. 58.↵
    1. Medana IM,
    2. Esiri MM
    . Axonal damage: a key predictor of outcome in human CNS diseases. Brain 2003;126:515–30 doi:10.1093/brain/awg061 pmid:12566274
    CrossRefPubMedWeb of Science
  59. 59.↵
    1. Mulero P,
    2. Midaglia L,
    3. Montalban X
    . Ocrelizumab: a new milestone in multiple sclerosis therapy. Ther Adv Neurol Disord 2018;11:1756286418773025 doi:10.1177/1756286418773025 pmid:29774057
    CrossRefPubMed
  60. 60.↵
    1. Xu J,
    2. Cheng Y,
    3. Chai P, et al
    . White-matter volume reduction and the protective effect of immunosuppressive therapy in systemic lupus erythematosus patients with normal appearance by conventional magnetic resonance imaging. J Rheumatol 2010;37:974–86 doi:10.3899/jrheum.090967 pmid:20231206
    Abstract/FREE Full Text
  61. 61.↵
    1. Blasko I,
    2. Hinterberger M,
    3. Kemmler G, et al
    . Conversion from mild cognitive impairment to dementia: influence of folic acid and vitamin B12 use in the VITA cohort. J Nutr Health Aging 2012;16:687–94 doi:10.1007/s12603-012-0051-y pmid:23076510
    CrossRefPubMed
  62. 62.↵
    1. Mayer AR,
    2. Ling J,
    3. Mannell MV, et al
    . A prospective diffusion tensor imaging study in mild traumatic brain injury. Neurology 2010;74:643–50 doi:10.1212/WNL.0b013e3181d0ccdd pmid:20089939
    Abstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 45 (12)
American Journal of Neuroradiology
Vol. 45, Issue 12
1 Dec 2024
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Macro- and Microstructural White Matter Differences in Neurologic Postacute Sequelae of SARS-CoV-2 Infection
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Erin E. O’Connor, Rosangela Salerno-Goncalves, Nikita Rednam, Rory O’Brien, Peter Rock, Andrea R. Levine, Thomas A. Zeffiro
Macro- and Microstructural White Matter Differences in Neurologic Postacute Sequelae of SARS-CoV-2 Infection
American Journal of Neuroradiology Dec 2024, 45 (12) 1910-1918; DOI: 10.3174/ajnr.A8481

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
White Matter Changes Post-SARS CoV-2 Infection
Erin E. O’Connor, Rosangela Salerno-Goncalves, Nikita Rednam, Rory O’Brien, Peter Rock, Andrea R. Levine, Thomas A. Zeffiro
American Journal of Neuroradiology Dec 2024, 45 (12) 1910-1918; DOI: 10.3174/ajnr.A8481
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • DL Image Reconstruction in T2-Weighted TSE at 7T
  • Automated Lesion Segmentation Software in MS
  • Interpretation Errors in Adults with MRE
Show more Ultra-High-Field MRI/Imaging of Epilepsy/Demyelinating Diseases/Inflammation/Infection

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire