Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleNeurovascular/Stroke Imaging

Pericarotid Fat as a Marker of Cerebrovascular Risk

Riccardo Cau, Nicoletta Anzalone, Lorenzo Mannelli, Myriam Edjlali, Antonella Balestrieri, Valentina Nardi, Giuseppe Lanzino, Amir Lerman, Jasjit S. Suri and Luca Saba
American Journal of Neuroradiology November 2024, 45 (11) 1635-1641; DOI: https://doi.org/10.3174/ajnr.A8300
Riccardo Cau
aFrom the Department of Radiology (R.C., A.B., L.S.), Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Riccardo Cau
Nicoletta Anzalone
bVita-Salute San Raffaele University (N.A.), Milan, Italy
cNeuroradiology Unit and CERMAC (N.A.), IRCCS Ospedale San Raffaele, Milan, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nicoletta Anzalone
Lorenzo Mannelli
dIRCCS SYNLAB SDN S.p.A. (L.M.), Naples, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Myriam Edjlali
eDepartment of Neuroradiology (M.E.), Université Paris-Descartes-Sorbonne-Paris-Cité, IMABRAIN-INSERM-UMR1266, DHU-Neurovasc, Centre Hospitalier Sainte-Anne, Paris, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Myriam Edjlali
Antonella Balestrieri
aFrom the Department of Radiology (R.C., A.B., L.S.), Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Antonella Balestrieri
Valentina Nardi
fDepartment of Neurosurgery (V.N., G.L.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Valentina Nardi
Giuseppe Lanzino
fDepartment of Neurosurgery (V.N., G.L.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Giuseppe Lanzino
Amir Lerman
gDepartment of Cardiovascular Medicine (A.L.), Mayo Clinic College of Medicine, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jasjit S. Suri
hStroke Monitoring and Diagnostic Division (J.S.S.), AtheroPoint, Roseville, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jasjit S. Suri
Luca Saba
aFrom the Department of Radiology (R.C., A.B., L.S.), Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Luca Saba
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Dai H,
    2. Much AA,
    3. Maor E, et al
    . Global, regional, and national burden of ischaemic heart disease and its attributable risk factors, 1990-2017: results from the Global Burden of Disease Study 2017. Eur Heart J Qual Care Clin Outcomes 2022;8:50–60 doi:10.1093/ehjqcco/qcaa076 pmid:33017008
    CrossRefPubMed
  2. 2.↵
    1. Saba L,
    2. Agarwal N,
    3. Cau R, et al
    . Review of imaging biomarkers for the vulnerable carotid plaque. JVS Vasc Sci 2021;2:149–58 doi:10.1016/j.jvssci.2021.03.001 pmid:34617065
    CrossRefPubMed
  3. 3.↵
    1. Ross R
    . Atherosclerosis—an inflammatory disease. N Engl J Med 1999;340:115–26 doi:10.1056/NEJM199901143400207 pmid:9887164
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Saba L,
    2. Cau R,
    3. Murgia A, et al
    . Carotid Plaque-RADS, a novel stroke risk classification system. JACC Cardiovasc Imaging 2023;17:62–75 doi:10.1016/j.jcmg.2023.09.005 pmid:37823860
    CrossRefPubMed
  5. 5.↵
    1. Mazighi M,
    2. Labreuche J,
    3. Gongora-Rivera F, et al
    . Autopsy prevalence of intracranial atherosclerosis in patients with fatal stroke. Stroke 2008;39:1142–47 doi:10.1161/STROKEAHA.107.496513 pmid:18309170
    Abstract/FREE Full Text
  6. 6.↵
    1. Rajsheker S,
    2. Manka D,
    3. Blomkalns AL, et al
    . Crosstalk between perivascular adipose tissue and blood vessels. Curr Opin Pharmacol 2010;10:191–96 doi:10.1016/j.coph.2009.11.005 pmid:20060362
    CrossRefPubMed
  7. 7.↵
    1. Mancio J,
    2. Oikonomou EK,
    3. Antoniades C
    . Perivascular adipose tissue and coronary atherosclerosis. Heart 2018;104:1654–62 doi:10.1136/heartjnl-2017-312324 pmid:29853488
    Abstract/FREE Full Text
  8. 8.↵
    1. Ridker PM,
    2. Hennekens CH,
    3. Buring JE, et al
    . C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000;342:836–43 doi:10.1056/NEJM200003233421202 pmid:10733371
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Danesh J,
    2. Wheeler JG,
    3. Hirschfield GM, et al
    . C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 2004;350:1387–97 doi:10.1056/NEJMoa032804 pmid:15070788
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Tang TY,
    2. Howarth SPS,
    3. Miller SR, et al
    . Comparison of the inflammatory burden of truly asymptomatic carotid atheroma with atherosclerotic plaques in patients with asymptomatic carotid stenosis undergoing coronary artery bypass grafting: an ultrasmall superparamagnetic iron oxide enhanced magnet. Eur J Vasc Endovasc Surg 2008;35:392–98 doi:10.1016/j.ejvs.2007.10.019 pmid:18171628
    CrossRefPubMed
  11. 11.↵
    1. Tang TY,
    2. Howarth SPS,
    3. Miller SR, et al
    . The ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) study. J Am Coll Cardiol 2009;53:2039–50 doi:10.1016/j.jacc.2009.03.018 pmid:19477353
    FREE Full Text
  12. 12.↵
    1. Kooi ME,
    2. Cappendijk VC,
    3. Cleutjens KBJM, et al
    . Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 2003;107:2453–58 doi:10.1161/01.CIR.0000068315.98705.CC pmid:12719280
    Abstract/FREE Full Text
  13. 13.↵
    1. Poredos P,
    2. Gregoric ID,
    3. Jezovnik MK
    . Inflammation of carotid plaques and risk of cerebrovascular events. Ann Transl Med 2020;8:1281 doi:10.21037/atm-2020-cass-15 pmid:33178813
    CrossRefPubMed
  14. 14.↵
    1. Saba L,
    2. Zucca S,
    3. Gupta A, et al
    . Perivascular fat density and contrast plaque enhancement: does a correlation exist? AJNR Am J Neuroradiol 2020;41:1460–65 doi:10.3174/ajnr.A6710 pmid:32732275
    Abstract/FREE Full Text
  15. 15.↵
    1. Zhang S,
    2. Yu X,
    3. Gu H, et al
    . Identification of high-risk carotid plaque by using carotid perivascular fat density on computed tomography angiography. Eur J Radiology 2022;150:110269 doi:10.1016/j.ejrad.2022.110269 pmid:35349933
    CrossRefPubMed
  16. 16.↵
    1. Yu M,
    2. Meng Y,
    3. Zhang H, et al
    . Associations between pericarotid fat density and image-based risk characteristics of carotid plaque. Eur J Radiology 2022;153:110364 doi:10.1016/j.ejrad.2022.110364 pmid:35609448
    CrossRefPubMed
  17. 17.↵
    1. Baradaran H,
    2. Myneni PK,
    3. Patel P, et al
    . Association between carotid artery perivascular fat density and cerebrovascular ischemic events. J Am Heart Assoc 2018;7:e010383 doi:10.1161/JAHA.118.010383 pmid:30561272
    CrossRefPubMed
  18. 18.↵
    1. Falk E,
    2. Thim T,
    3. Kristensen IB
    . Atherosclerotic plaque, adventitia, perivascular fat, and carotid imaging. JACC Cardiovasc Imaging 2009;2:183–86 doi:10.1016/j.jcmg.2008.11.005 pmid:19356554
    FREE Full Text
  19. 19.↵
    1. Zhang S,
    2. Gu H,
    3. Yu X, et al
    . Association between carotid artery perivascular fat density and intraplaque hemorrhage. Front Cardiovasc Med 2021;8:735794 doi:10.3389/fcvm.2021.735794 pmid:34616788
    CrossRefPubMed
  20. 20.↵
    1. Aghamohammadzadeh R,
    2. Withers S,
    3. Lynch F, et al
    . Perivascular adipose tissue from human systemic and coronary vessels: the emergence of a new pharmacotherapeutic target. Br J Pharmacol 2012;165:670–82 doi:10.1111/j.1476-5381.2011.01479.x pmid:21564083
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Katsiki N,
    2. Mikhailidis DP
    . Perivascular adipose tissue: pathophysiological links with inflammation, atherosclerosis, and thrombosis. Angiology 2021;73:195–96 doi:10.1177/00033197211014676 pmid:34030508
    CrossRefPubMed
  22. 22.↵
    1. Falk E
    . Pathogenesis of atherosclerosis. J Am Coll Cardiol 2006;47:C7–12 doi:10.1016/j.jacc.2005.09.068 pmid:16631513
    FREE Full Text
  23. 23.↵
    1. Guglielmo M,
    2. Lin A,
    3. Dey D, et al
    . Epicardial fat and coronary artery disease: role of cardiac imaging. Atherosclerosis 2021;321:30–38 doi:10.1016/j.atherosclerosis.2021.02.008 pmid:33636676
    CrossRefPubMed
  24. 24.↵
    1. Pandzic Jaksic V,
    2. Grizelj D,
    3. Livun A, et al
    . Inflammatory gene expression in neck perivascular and subcutaneous adipose tissue in men with carotid stenosis. Angiology 2021;73:234–43 doi:10.1177/00033197211012539 pmid:33906471
    CrossRefPubMed
  25. 25.↵
    1. Cho Y,
    2. Lee SE,
    3. Lee HC, et al
    . Adipokine resistin is a key player to modulate monocytes, endothelial cells, and smooth muscle cells, leading to progression of atherosclerosis in rabbit carotid artery. J Am Coll Cardiol 2011;57:99–109 doi:10.1016/j.jacc.2010.07.035 pmid:21185508
    FREE Full Text
  26. 26.↵
    1. Stanek A,
    2. Brożyna-Tkaczyk K,
    3. Myśliński W
    . The role of obesity-induced perivascular adipose tissue (PVAT) dysfunction in vascular homeostasis. Nutrients 2021;13:3843 doi:10.3390/nu13113843 pmid:34836100
    CrossRefPubMed
  27. 27.↵
    1. Takaoka M,
    2. Suzuki H,
    3. Shioda S, et al
    . Endovascular injury induces rapid phenotypic changes in perivascular adipose tissue. Arterioscler Thromb Vasc Biol 2010;30:1576–82 doi:10.1161/ATVBAHA.110.207175 pmid:20489168
    Abstract/FREE Full Text
  28. 28.↵
    1. Mazurek T,
    2. Zhang L,
    3. Zalewski A, et al
    . Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 2003;108:2460–66 doi:10.1161/01.CIR.0000099542.57313.C5 pmid:14581396
    Abstract/FREE Full Text
  29. 29.↵
    1. Henrichot E,
    2. Juge-Aubry CE,
    3. Pernin A, et al
    . Production of chemokines by perivascular adipose tissue: a role in the pathogenesis of atherosclerosis? Arterioscler Thromb Vasc Biol 2005;25:2594–99 doi:10.1161/01.ATV.0000188508.40052.35 pmid:16195477
    Abstract/FREE Full Text
  30. 30.↵
    1. Tomas L,
    2. Edsfeldt A,
    3. Mollet IG, et al
    . Altered metabolism distinguishes high-risk from stable carotid atherosclerotic plaques. Eur Heart J 2018;39:2301–10 doi:10.1093/eurheartj/ehy124 pmid:29562241
    CrossRefPubMed
  31. 31.↵
    1. Nosalski R,
    2. Guzik TJ
    . Perivascular adipose tissue inflammation in vascular disease. Br J Pharmacol 2017;174:3496–513 doi:10.1111/bph.13705 pmid:28063251
    CrossRefPubMed
  32. 32.↵
    1. Kim HW,
    2. Belin de Chantemèle EJ,
    3. Weintraub NL
    . Perivascular adipocytes in vascular disease. Arterioscler Thromb Vasc Biol 2019;39:2220–27 doi:10.1161/ATVBAHA.119.312304 pmid:31510794
    CrossRefPubMed
  33. 33.↵
    1. Sagris M,
    2. Antonopoulos AS,
    3. Simantiris S, et al
    . Pericoronary fat attenuation index—a new imaging biomarker and its diagnostic and prognostic utility: a systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging 2022;23:e526–36 doi:10.1093/ehjci/jeac174 pmid:36069510
    CrossRefPubMed
  34. 34.↵
    1. Saba L,
    2. Loewe C,
    3. Weikert T, et al
    . State-of-the-art CT and MR imaging and assessment of atherosclerotic carotid artery disease: the reporting-a consensus document by the European Society of Cardiovascular Radiology (ESCR). Eur Radiology 2022;33:1088–101 doi:10.1007/s00330-022-09025-6 pmid:36194266
    CrossRefPubMed
  35. 35.↵
    1. Skilton MR,
    2. Serusdat A,
    3. Sethu AHAU, et al
    . Noninvasive measurement of carotid extra-media thickness: associations with cardiovascular risk factors and intima-media thickness. JACC Cardiovasc Imaging 2009;2:176–82 doi:10.1016/j.jcmg.2008.09.013 pmid:19356553
    Abstract/FREE Full Text
  36. 36.↵
    1. Haberka M,
    2. Gąsior Z
    . A carotid extra-media thickness, PATIMA combined index and coronary artery disease: comparison with well-established indexes of carotid artery and fat depots. Atherosclerosis 2015;243:307–13 doi:10.1016/j.atherosclerosis.2015.09.022 pmid:26414210
    CrossRefPubMed
  37. 37.↵
    1. Metz S,
    2. Beer AJ,
    3. Settles M, et al
    . Characterization of carotid artery plaques with USPIO-enhanced MRI: assessment of inflammation and vascularity as in vivo imaging biomarkers for plaque vulnerability. Int J Cardiovasc Imaging 2011;27:901–12 doi:10.1007/s10554-010-9736-7 pmid:20972832
    CrossRefPubMed
  38. 38.↵
    1. Johnsrud K,
    2. Skagen K,
    3. Seierstad T, et al
    . (18)F-FDG PET/CT for the quantification of inflammation in large carotid artery plaques. J Nucl Cardiol Off Cardiol 2019;26:883–93 doi:10.1007/s12350-017-1121-7 pmid:29209949
    CrossRefPubMed
  39. 39.↵
    1. Rudd JHF,
    2. Warburton EA,
    3. Fryer TD, et al
    . Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708–11 doi:10.1161/01.cir.0000020548.60110.76 pmid:12057982
    Abstract/FREE Full Text
  40. 40.↵
    1. Hop H,
    2. de Boer SA,
    3. Reijrink M, et al
    . 18F-sodium fluoride positron emission tomography assessed microcalcifications in culprit and non-culprit human carotid plaques. J Nucl Cardiol 2019;26:1064–75 doi:10.1007/s12350-018-1325-5 pmid:29943142
    CrossRefPubMed
  41. 41.↵
    1. Cocker MS,
    2. Spence JD,
    3. Hammond R, et al
    ; Canadian Atherosclerosis Imaging Network (CAIN). [18F]-NaF PET/CT identifies active calcification in carotid plaque. JACC Cardiovasc Imaging 2017;10:486–88 doi:10.1016/j.jcmg.2016.03.005 pmid:27318719
    FREE Full Text
  42. 42.↵
    1. Kaczynski J,
    2. Sellers S,
    3. Seidman MA, et al
    . 18F-NaF PET/MRI for detection of carotid atheroma in acute neurovascular syndrome. Radiology 2022;305:137–48 doi:10.1148/radiol.212283 pmid:35670715
    CrossRefPubMed
  43. 43.↵
    1. Mechtouff L,
    2. Sigovan M,
    3. Douek P, et al
    . Simultaneous assessment of microcalcifications and morphological criteria of vulnerability in carotid artery plaque using hybrid (18)F-NaF PET/MRI. J Nucl Cardiol Off Cardiol 2022;29:1064–74 doi:10.1007/s12350-020-02400-0 pmid:33145738
    CrossRefPubMed
  44. 44.↵
    1. Vesey AT,
    2. Jenkins WSA,
    3. Irkle A, et al
    . (18)F-fluoride and (18)F-fluorodeoxyglucose positron emission tomography after transient ischemic attack or minor ischemic stroke: case-control study. Circ Cardiovasc Imaging 2017;10:e004976 doi:10.1161/CIRCIMAGING.116.004976 pmid:28292859
    Abstract/FREE Full Text
  45. 45.↵
    1. Chen X,
    2. Dang Y,
    3. Hu H, et al
    . Pericoronary adipose tissue attenuation assessed by dual-layer spectral detector computed tomography is a sensitive imaging marker of high-risk plaques. Quant Imaging Med Surg 2021;11:2093–103 doi:10.21037/qims-20-860 pmid:33936990
    CrossRefPubMed
  46. 46.↵
    1. Tan N,
    2. Dey D,
    3. Marwick TH, et al
    . Pericoronary adipose tissue as a marker of cardiovascular risk: JACC review topic of the week. J Am Coll Cardiol 2023;81:913–23 doi:10.1016/j.jacc.2022.12.021 pmid:36858711
    CrossRefPubMed
  47. 47.↵
    1. Ma R,
    2. Ties D,
    3. van Assen M, et al
    . Towards reference values of pericoronary adipose tissue attenuation: impact of coronary artery and tube voltage in coronary computed tomography angiography. Eur Radiology 2020;30:6838–46 doi:10.1007/s00330-020-07069-0 pmid:32700017
    CrossRefPubMed
  48. 48.↵
    1. Cau R,
    2. Gupta A,
    3. Kooi ME, et al
    . Pearls and pitfalls of carotid artery imaging: ultrasound, computed tomography angiography, and MR imaging. Radiology Clin North Am 2023;61:405–13 doi:10.1016/j.rcl.2023.01.001 pmid:36931758
    CrossRefPubMed
  49. 49.↵
    1. Cademartiri F,
    2. Balestrieri A,
    3. Cau R, et al
    . Insight from imaging on plaque vulnerability: similarities and differences between coronary and carotid arteries—implications for systemic therapies. Cardiovasc Diagn Ther 2020;10:1150–62 doi:10.21037/cdt-20-528 pmid:32968666
    CrossRefPubMed
  50. 50.↵
    1. Mayer M,
    2. Borja AJ,
    3. Hancin EC, et al
    . Imaging atherosclerosis by PET, with emphasis on the role of FDG and NaF as potential biomarkers for this disorder. Front Physiol 2020;11:511391 doi:10.3389/fphys.2020.511391 pmid:33192540
    CrossRefPubMed
  51. 51.↵
    1. Verhagen SN,
    2. Visseren FLJ
    . Perivascular adipose tissue as a cause of atherosclerosis. Atherosclerosis 2011;214:3–10 doi:10.1016/j.atherosclerosis.2010.05.034 pmid:20646709
    CrossRefPubMedWeb of Science
  52. 52.↵
    1. Alkhalil M,
    2. Edmond E,
    3. Edgar L, et al
    . The relationship of perivascular adipose tissue and atherosclerosis in the aorta and carotid arteries, determined by magnetic resonance imaging. Diab Vasc Dis Res 2018;15:286–93 doi:10.1177/1479164118757923 pmid:29446645
    CrossRefPubMed
  53. 53.↵
    1. Liu Y,
    2. Xu L,
    3. Gu Y, et al
    . Impact of H-type hypertension on pericarotid adipose tissue and plaque characteristics based on computed tomography (CT) angiography: a propensity score matching study. Med Sci Monit 2021;27:e933351 doi:10.12659/MSM.933351 pmid:34857728
    CrossRefPubMed
  54. 54.↵
    1. Liu Y,
    2. Zhao Y,
    3. Guo Z, et al
    . Pericarotid fat stranding at computed tomography angiography: a marker of the short-term prognosis of acute ischemic stroke. J Comput Assist Tomogr 2024;48:311–16 doi:10.1097/RCT.0000000000001555 pmid:37876252
    CrossRefPubMed
  55. 55.↵
    1. Liu X,
    2. Wu F,
    3. Jia X, et al
    . Pericarotid adipose tissue computed tomography attenuation distinguishes different stages of carotid atherosclerotic disease: a cross-sectional study. Quant Imaging Med Surg 2023;13:8247–58 doi:10.21037/qims-23-454 pmid:38106246
    CrossRefPubMed
  56. 56.↵
    1. Liu Y,
    2. Zhao Y,
    3. Guo Z, et al
    . A novel predictive model based on pericarotid adipose tissue and lumen stenosis for stroke risk in patients with asymptomatic carotid stenosis. J Investig Med 2024;72:270–78 doi:10.1177/10815589241226728 pmid:38183206
    CrossRefPubMed
  57. 57.↵
    1. Zhang DH,
    2. Jin JL,
    3. Zhu CF, et al
    . Association between carotid artery perivascular fat density and cerebral small vessel disease. Aging (Albany NY) 2021;13:18839–51 doi:10.18632/aging.203327 pmid:34289452
    CrossRefPubMed
  58. 58.↵
    1. Hu X,
    2. Chen J,
    3. Fu H, et al
    . Association between carotid artery perivascular fat density and embolic stroke of undetermined source. Front Neurol 2021;12:765962 doi:10.3389/fneur.2021.765962 pmid:35250789
    CrossRefPubMed
  59. 59.↵
    1. Gencer ES,
    2. Yilmaz E,
    3. Arsava EM, et al
    . Carotid artery perivascular adipose tissue density and response to intravenous tissue plasminogen activator in acute ischemic stroke. Angiology 2023;75:472–79 doi:10.1177/00033197231174654
    CrossRefPubMed
  60. 60.↵
    1. Lan Y,
    2. Shang J,
    3. Ma Y, et al
    . A new predictor of coronary artery disease in acute ischemic stroke or transient ischemic attack patients: pericarotid fat density. Eur Radiology 2023;34:1667–76 doi:10.1007/s00330-023-10046-y
    CrossRefPubMed
  61. 61.↵
    1. Hu J,
    2. Hu N,
    3. Hu T, et al
    . Associations between preprocedural carotid artery perivascular fat density and early in-stent restenosis after carotid artery stenting. Heliyon 2023;9:e16220 doi:10.1016/j.heliyon.2023.e16220 pmid:37346364
    CrossRefPubMed
  62. 62.↵
    1. Jin J,
    2. Huang R,
    3. Chen Q, et al
    . Carotid artery perivascular adipose tissue density relates to recanalization and clinical outcome after mechanical thrombectomy. Front Aging Neurosci 2021;13:761248 doi:10.3389/fnagi.2021.761248 pmid:34899273
    CrossRefPubMed
  63. 63.↵
    1. Horimatsu T,
    2. Kim HW,
    3. Weintraub NL
    . The role of perivascular adipose tissue in non-atherosclerotic vascular disease. Front Physiol 2017;8:969 doi:10.3389/fphys.2017.00969 pmid:29234289
    CrossRefPubMed
  64. 64.↵
    1. Manka D,
    2. Chatterjee TK,
    3. Stoll LL, et al
    . Transplanted perivascular adipose tissue accelerates injury-induced neointimal hyperplasia: role of monocyte chemoattractant protein-1. Arterioscler Thromb Vasc Biol 2014;34:1723–30 doi:10.1161/ATVBAHA.114.303983 pmid:24947528
    Abstract/FREE Full Text
  65. 65.↵
    1. Saw J
    . Spontaneous coronary artery dissection. Can J Cardiol 2013;29:1027–33 doi:10.1016/j.cjca.2012.12.018 pmid:23498840
    CrossRefPubMed
  66. 66.↵
    1. Adlam D,
    2. Alfonso F,
    3. Maas A, et al
    ; Writing Committee. European Society of Cardiology, acute cardiovascular care association, SCAD study group: a position paper on spontaneous coronary artery dissection. Eur Heart J 2018;39:3353–68 doi:10.1093/eurheartj/ehy080 pmid:29481627
    CrossRefPubMed
  67. 67.↵
    1. Hayes SN,
    2. Kim ESH,
    3. Saw J, et al
    ; American Heart Association Council on Peripheral Vascular Disease; Council on Clinical Cardiology; Council on Cardiovascular and Stroke Nursing; Council on Genomic and Precision Medicine; and Stroke Council. Spontaneous coronary artery dissection: current state of the science: a scientific statement from the American Heart Association. Circulation 2018;137:e523–57 doi:10.1161/CIR.0000000000000564 pmid:29472380
    Abstract/FREE Full Text
  68. 68.↵
    1. Cheng K,
    2. Lin A,
    3. Stecher X, et al
    . Association between spontaneous internal carotid artery dissection and perivascular adipose tissue attenuation on computed tomography angiography. Int J Stroke 2023;18:829–38 doi:10.1177/17474930231158538 pmid:36748981
    CrossRefPubMed
  69. 69.↵
    1. Wall C,
    2. Huang Y,
    3. Le EV, et al
    . Pericoronary and periaortic adipose tissue density are associated with inflammatory disease activity in Takayasu arteritis and atherosclerosis. Eur Heart J Open 2021;1:oeab019 doi:10.1093/ehjopen/oeab019 pmid:34661196
    CrossRefPubMed
  70. 70.↵
    1. Zhou R,
    2. Fenster A,
    3. Xia Y, et al
    . Deep learning-based carotid media-adventitia and lumen-intima boundary segmentation from three-dimensional ultrasound images. Med Phys 2019;46:3180–93 doi:10.1002/mp.13581 pmid:31071228
    CrossRefPubMed
  71. 71.↵
    1. Zhou T,
    2. Tan T,
    3. Pan X, et al
    . Fully automatic deep learning trained on limited data for carotid artery segmentation from large image volumes. Quant Imaging Med Surg 2021;11:67–83 doi:10.21037/qims-20-286 pmid:33392012
    CrossRefPubMed
  72. 72.↵
    1. dos Santos FLC,
    2. Joutsen A,
    3. Paci M, et al
    . Automatic detection of carotid arteries in computed tomography angiography: a proof of concept protocol. Int J Cardiovasc Imaging 2016;32:1299–310 doi:10.1007/s10554-016-0880-6 pmid:27142430
    CrossRefPubMed
  73. 73.↵
    1. Oikonomou EK,
    2. Antonopoulos AS,
    3. Schottlander D, et al
    . Standardized measurement of coronary inflammation using cardiovascular computed tomography: integration in clinical care as a prognostic medical device. Cardiovasc Res 2021;117:2677–90 doi:10.1093/cvr/cvab286 pmid:34450625
    CrossRefPubMed
  74. 74.↵
    1. Cau R,
    2. Flanders A,
    3. Mannelli L, et al
    . Artificial intelligence in computed tomography plaque characterization: a review. Eur J Radiology 2021;140:109767 doi:10.1016/j.ejrad.2021.109767 pmid:34000598
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 45 (11)
American Journal of Neuroradiology
Vol. 45, Issue 11
1 Nov 2024
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Pericarotid Fat as a Marker of Cerebrovascular Risk
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Riccardo Cau, Nicoletta Anzalone, Lorenzo Mannelli, Myriam Edjlali, Antonella Balestrieri, Valentina Nardi, Giuseppe Lanzino, Amir Lerman, Jasjit S. Suri, Luca Saba
Pericarotid Fat as a Marker of Cerebrovascular Risk
American Journal of Neuroradiology Nov 2024, 45 (11) 1635-1641; DOI: 10.3174/ajnr.A8300

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Pericarotid Fat: Cerebrovascular Risk Marker
Riccardo Cau, Nicoletta Anzalone, Lorenzo Mannelli, Myriam Edjlali, Antonella Balestrieri, Valentina Nardi, Giuseppe Lanzino, Amir Lerman, Jasjit S. Suri, Luca Saba
American Journal of Neuroradiology Nov 2024, 45 (11) 1635-1641; DOI: 10.3174/ajnr.A8300
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • SUMMARY:
    • ABBREVIATIONS:
    • PATHOPHYSIOLOGY OF PERIVASCULAR CAROTID FAT
    • NONINVASIVE EVALUATION OF PCF
    • ASSOCIATION WITH FEATURES OF PLAQUE VULNERABILITY
    • ASSOCIATION WITH CEREBROVASCULAR ISCHEMIC EVENTS
    • ASSOCIATION WITH POSTOPERATIVE INTERVENTIONAL COMPLICATION/OUTCOME
    • ASSOCIATION WITH NONATHEROSCLEROTIC CAROTID VASCULAR DISEASE
    • FUTURE DIRECTION: ARTIFICIAL INTELLIGENCE AND RADIOMICS
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (2)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Carotid Plaque-RADS Score Combined with Pericarotid Fat Density—An Incremental Prediction Model for Stroke Recurrence
    Jinhua Qian, Qinjie Chi, Li Zhu, Tianhao Zhang, Wenbing Ding, Ruifan Yuan, Zhuo Chen, Tianle Wang
    Academic Radiology 2025
  • Development of a nomogram model for predicting acute stroke events based on dual-energy CTA analysis of carotid intraplaque and perivascular adipose tissue
    He Zhang, Juan Long, Chenzi Wang, Xiaohan Liu, He Lu, Wenbei Xu, Xiaonan Sun, Peipei Dou, Dexing Zhou, Lili Zhu, Kai Xu, Yankai Meng
    Frontiers in Neurology 2025 16

More in this TOC Section

  • DMV relationship with SVD and DTI measures in RSSI
  • DMV, IFS and CSVD burden
  • Role of Hypoperfusion Intensity Ratio in Vessel Occlusions: A Review on Safety and Clinical Outcomes
Show more Neurovascular/Stroke Imaging

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire