Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleAdult Brain
Open Access

Quantitative MRI in Multiple Sclerosis: From Theory to Application

M. Tranfa, G. Pontillo, M. Petracca, A. Brunetti, E. Tedeschi, G. Palma and S. Cocozza
American Journal of Neuroradiology December 2022, 43 (12) 1688-1695; DOI: https://doi.org/10.3174/ajnr.A7536
M. Tranfa
aFrom the Departments of Advanced Biomedical Sciences (M.T., G. Pontillo, A.B., E.T., S.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Tranfa
G. Pontillo
aFrom the Departments of Advanced Biomedical Sciences (M.T., G. Pontillo, A.B., E.T., S.C.)
bElectrical Engineering and Information Technology (G. Pontillo), University of Naples “Federico II,” Naples, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Pontillo
M. Petracca
cDepartment of Human Neurosciences (M.P.), Sapienza University of Rome, Rome, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Petracca
A. Brunetti
aFrom the Departments of Advanced Biomedical Sciences (M.T., G. Pontillo, A.B., E.T., S.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Brunetti
E. Tedeschi
aFrom the Departments of Advanced Biomedical Sciences (M.T., G. Pontillo, A.B., E.T., S.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E. Tedeschi
G. Palma
dInstitute of Nanotechnology (G. Palma), National Research Council, Lecce, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Palma
S. Cocozza
aFrom the Departments of Advanced Biomedical Sciences (M.T., G. Pontillo, A.B., E.T., S.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Cocozza
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Rovira À,
    2. Wattjes MP,
    3. Tintoré M, et al
    ; MAGNIMS Study Group. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-clinical implementation in the diagnostic process. Nat Rev Neurol 2015;11:471–82 doi:10.1038/nrneurol.2015.106 pmid:26149978
    CrossRefPubMed
  2. 2.↵
    1. Wattjes MP,
    2. Ciccarelli O,
    3. Reich DS, et al
    ; North American Imaging in Multiple Sclerosis Cooperative MRI Guidelines Working Group. MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol 2021;20:653–70 doi:10.1016/S1474-4422(21)00095-8 pmid:34139157
    CrossRefPubMed
  3. 3.↵
    1. Hagiwara A,
    2. Otsuka Y,
    3. Andica C, et al
    . Differentiation between multiple sclerosis and neuromyelitis optica spectrum disorders by multiparametric quantitative MRI using convolutional neural network. J Clin Neurosci 2021;87:55–58 doi:10.1016/j.jocn.2021.02.018 pmid:33863534
    CrossRefPubMed
  4. 4.↵
    1. Pudlac A,
    2. Burgetova A,
    3. Dusek P, et al
    . Deep gray matter iron content in neuromyelitis optica and multiple sclerosis. BioMed Res Int 2020;2020:6492786 doi:10.1155/2020/6492786 pmid:32509866
    CrossRefPubMed
  5. 5.↵
    1. Deistung A,
    2. Schweser F,
    3. Reichenbach JR
    . Overview of quantitative susceptibility mapping. NMR Biomed 2017;30:e3569 doi:10.1002/nbm.3569 pmid:27434134
    CrossRefPubMed
  6. 6.↵
    1. Seiler A,
    2. Nöth U,
    3. Hok P, et al
    . Multiparametric quantitative MRI in neurological diseases. Front Neurol 2021;12:640239 doi:10.3389/fneur.2021.640239 pmid:33763021
    CrossRefPubMed
  7. 7.↵
    1. Li J,
    2. Lin H,
    3. Liu T, et al
    . Quantitative susceptibility mapping (QSM) minimizes interference from cellular pathology in R2* estimation of liver iron concentration. J Magn Reson Imaging 2018;48:1069–79 doi:10.1002/jmri.26019 pmid:29566449
    CrossRefPubMed
  8. 8.↵
    1. Banerjee R,
    2. Pavlides M,
    3. Tunnicliffe EM, et al
    . Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepatol 2014;60:69–77 doi:10.1016/j.jhep.2013.09.002 pmid:24036007
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Straub S,
    2. Laun FB,
    3. Emmerich J, et al
    . Potential of quantitative susceptibility mapping for detection of prostatic calcifications. J Magn Reson Imaging 2017;45:889– 98 doi:10.1002/jmri.25385 pmid:27418017
    CrossRefPubMed
  10. 10.↵
    1. Jerban S,
    2. Lu X,
    3. Jang H, et al
    . Significant correlations between human cortical bone mineral density and quantitative susceptibility mapping (QSM) obtained with 3D cones ultrashort echo time magnetic resonance imaging (UTE-MRI). Magn Reson Imaging 2019;62:104–10 doi:10.1016/j.mri.2019.06.016 pmid:31247253
    CrossRefPubMed
  11. 11.↵
    1. Karur GR,
    2. Hanneman K
    . Cardiac MRI T1, T2, and T2* mapping in clinical practice. Advances in Clinica Radiology 2019;1:27–41 doi:10.1016/j.yacr.2019.03.001
    CrossRef
  12. 12.↵
    1. Granziera C,
    2. Wuerfel J,
    3. Barkhof F, et al
    ; MAGNIMS Study Group. Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain 2021;144:1296–1311 doi:10.1093/brain/awab029 pmid:33970206
    CrossRefPubMed
  13. 13.↵
    1. Pontillo G,
    2. Cocozza S,
    3. Lanzillo R, et al
    . Determinants of deep gray matter atrophy in multiple sclerosis: a multimodal MRI study. AJNR Am J Neuroradiol 2019;40:99–106 doi:10.3174/ajnr.A5915 pmid:30573464
    Abstract/FREE Full Text
  14. 14.↵
    1. Mehta V,
    2. Pei W,
    3. Yang G, et al
    . Iron is a sensitive biomarker for inflammation in multiple sclerosis lesions. PLoS One 2013;8:e57573 doi:10.1371/journal.pone.0057573 pmid:23516409
    CrossRefPubMed
  15. 15.↵
    1. Möller HE,
    2. Bossoni L,
    3. Connor JR, et al
    . Iron, myelin, and the brain: neuroimaging meets neurobiology. Trends Neurosci 2019;42:384–401 doi:10.1016/j.tins.2019.03.009 pmid:31047721
    CrossRefPubMed
  16. 16.↵
    1. Deoni SC,
    2. Rutt BK,
    3. Peters TM
    . Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 2003;49:515–26 doi:10.1002/mrm.10407 pmid:12594755
    CrossRefPubMed
  17. 17.↵
    1. Yarnykh VL
    . Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 2007;57:192–200 doi:10.1002/mrm.21120 pmid:17191242
    CrossRefPubMed
  18. 18.↵
    1. Palma G,
    2. Tedeschi E,
    3. Borrelli P, et al
    . A novel multiparametric approach to 3D quantitative MRI of the brain. PLoS One 2015;10:e0134963 doi:10.1371/journal.pone.0134963 pmid:26284778
    CrossRefPubMed
  19. 19.↵
    1. Baudrexel S,
    2. Nöth U,
    3. Schüre JR, et al
    . T1 mapping with the variable flip angle technique: a simple correction for insufficient spoiling of transverse magnetization. Magn Reson Med 2018;79:3082–92 doi:10.1002/mrm.26979 pmid:29052267
    CrossRefPubMed
  20. 20.↵
    1. Björk M,
    2. Ingle RR,
    3. Gudmundson E, et al
    . Parameter estimation approach to banding artifact reduction in balanced steady-state free precession. Magn Reson Med 2014;72:880–92 doi:10.1002/mrm.24986 pmid:24166591
    CrossRefPubMed
  21. 21.↵
    1. Monti S,
    2. Borrelli P,
    3. Tedeschi E, et al
    . RESUME: turning an SWI acquisition into a fast qMRI protocol. PLoS One 2017;12:e0189933 doi:10.1371/journal.pone.0189933 pmid:29261786
    CrossRefPubMed
  22. 22.↵
    1. Monti S,
    2. Pontillo G,
    3. Russo C, et al
    . RESUMEN: a flexible class of multi-parameter qMRI protocols. Phys Med 2021;88:23–36 doi:10.1016/j.ejmp.2021.04.005 pmid:34171573
    CrossRefPubMed
  23. 23.↵
    1. Li W,
    2. Wang N,
    3. Yu F, et al
    . A method for estimating and removing streaking artifacts in quantitative susceptibility mapping. Neuroimage 2015;108:111–22 doi:10.1016/j.neuroimage.2014.12.043 pmid:25536496
    CrossRefPubMed
  24. 24.↵
    1. Li W,
    2. Wu B,
    3. Liu C
    . Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. Neuroimage 2011;55:1645–56 doi:10.1016/j.neuroimage.2010.11.088 pmid:21224002
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Aja-Fernández S,
    2. Pieciak T,
    3. Vegas-Sánchez-Ferrero G
    . Spatially variant noise estimation in MRI: a homomorphic approach. Med Image Anal 2015;20:184–97 doi:10.1016/j.media.2014.11.005 pmid:25499191
    CrossRefPubMed
  26. 26.↵
    1. Borrelli P,
    2. Palma G,
    3. Tedeschi E, et al
    . Improving signal-to-noise ratio in susceptibility weighted imaging: a novel multicomponent non-local approach. PLoS One 2015;10:e0126835 doi:10.1371/journal.pone.0126835 pmid:26030293
    CrossRefPubMed
  27. 27.↵
    1. Filippi M,
    2. Bar-Or A,
    3. Piehl F, et al
    . Multiple sclerosis. Nat Rev Dis Primers 2018;4:43 doi:10.1038/s41572-018-0041-4 pmid:30410033
    CrossRefPubMed
  28. 28.↵
    1. Allen IV,
    2. McQuaid S,
    3. Mirakhur M, et al
    . Pathological abnormalities in the normal-appearing white matter in multiple sclerosis. Neurolo Sci 2001;22:141–44 doi:10.1007/s100720170012 pmid:11603615
    CrossRefPubMed
  29. 29.↵
    1. Hametner S,
    2. Wimmer I,
    3. Haider L, et al
    . Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol 2013;74:848–61 doi:10.1002/ana.23974 pmid:23868451
    CrossRefPubMed
  30. 30.↵
    1. Stephenson E,
    2. Nathoo N,
    3. Mahjoub Y, et al
    . Iron in multiple sclerosis: roles in neurodegeneration and repair. Nat Rev Neurol 2014;10:459–68 doi:10.1038/nrneurol.2014.118 pmid:25002107
    CrossRefPubMed
  31. 31.↵
    1. Weiskopf N,
    2. Edwards LJ,
    3. Helms G, et al
    . Quantitative magnetic resonance imaging of brain anatomy and in vivo histology. Nat Rev Phys 2021;3:570–88 doi:10.1038/s42254-021-00326-1
    CrossRef
  32. 32.↵
    1. Wisnieff C,
    2. Ramanan S,
    3. Olesik J, et al
    . Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: Interpreting positive susceptibility and the presence of iron. Magn Reson Med 2015;74:564–70 doi:10.1002/mrm.25420 pmid:25137340
    CrossRefPubMed
  33. 33.↵
    1. Tofts PS
    1. Tofts PS
    . PD: proton density of tissue water. In: Tofts PS. Quantitative MRI of the Brain: Measuring Changes Caused by Disease. Wiley Online Library; 2003:85–109
  34. 34.↵
    1. Eis M,
    2. Els T,
    3. Hoehn-Berlage M
    . High resolution quantitative relaxation and diffusion MRI of three different experimental brain tumors in rat. Magn Reson Med 1995;34:835–44 doi:10.1002/mrm.1910340608 pmid:8598810
    CrossRefPubMed
  35. 35.↵
    1. Schmierer K,
    2. Wheeler-Kingshott CA,
    3. Tozer DJ, et al
    . Quantitative magnetic resonance of postmortem multiple sclerosis brain before and after fixation. Magn Reson Med 2008;59:268–77 doi:10.1002/mrm.21487 pmid:18228601
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Stüber C,
    2. Morawski M,
    3. Schäfer A, et al
    . Myelin and iron concentration in the human brain: a quantitative study of MRI contrast. Neuroimage 2014;93 Pt 1:95–106 doi:10.1016/j.neuroimage.2014.02.026 pmid:24607447
    CrossRefPubMed
  37. 37.↵
    1. Bagnato F,
    2. Hametner S,
    3. Yao B, et al
    . Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla. Brain 2011;134:3602–15 doi:10.1093/brain/awr278 pmid:22171355
    CrossRefPubMed
  38. 38.↵
    1. Hametner S,
    2. Endmayr V,
    3. Deistung A, et al
    . The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation: a biochemical and histological validation study. Neuroimage 2018;179:117–33 doi:10.1016/j.neuroimage.2018.06.007 pmid:29890327
    CrossRefPubMed
  39. 39.↵
    1. van der Valk P,
    2. De Groot CJ
    . Staging of multiple sclerosis (MS) lesions: pathology of the time frame of MS. Neuropathol Appl Neurobiol 2000;26:2–10 doi:10.1046/j.1365-2990.2000.00217.x pmid:10736062
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Frischer JM,
    2. Weigand SD,
    3. Guo Y, et al
    . Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol 2015;78:710–21 doi:10.1002/ana.24497 pmid:26239536
    CrossRefPubMed
  41. 41.↵
    1. Tallantyre EC,
    2. Brookes MJ,
    3. Dixon JE, et al
    . Demonstrating the perivascular distribution of MS lesions in vivo with 7-Tesla MRI. Neurology 2008;70:2076–78 doi:10.1212/01.wnl.0000313377.49555.2e pmid:18505982
    CrossRefPubMed
  42. 42.↵
    1. Gaitán MI,
    2. Shea CD,
    3. Evangelou IE, et al
    . Evolution of the blood-brain barrier in newly forming multiple sclerosis lesions. Ann Neurol 2011;70:22–29 doi:10.1002/ana.22472 pmid:21710622
    CrossRefPubMed
  43. 43.↵
    1. Blystad I,
    2. Håkansson I,
    3. Tisell A, et al
    . Quantitative MRI for analysis of active multiple sclerosis lesions without gadolinium-based contrast agent. AJNR Am J Neuroradiol 2016;37:94–100 doi:10.3174/ajnr.A4501 pmid:26471751
    Abstract/FREE Full Text
  44. 44.↵
    1. Hagiwara A,
    2. Hori M,
    3. Yokoyama K, et al
    . Utility of a multiparametric quantitative MRI model that assesses myelin and edema for evaluating plaques, periplaque white matter, and normal-appearing white matter in patients with multiple sclerosis: a feasibility study. AJNR Am J Neuroradiol 2017;38:237–42 doi:10.3174/ajnr.A4977 pmid:27789453
    Abstract/FREE Full Text
  45. 45.↵
    1. Zhang Y,
    2. Gauthier SA,
    3. Gupta A, et al
    . Quantitative susceptibility mapping and R2* measured changes during white matter lesion development in multiple sclerosis: myelin breakdown, myelin debris degradation and removal, and iron accumulation. AJNR Am J Neuroradiol 2016;37:1629–35 doi:10.3174/ajnr.A4825 pmid:27256856
    Abstract/FREE Full Text
  46. 46.↵
    1. Chen W,
    2. Gauthier SA,
    3. Gupta A, et al
    . Quantitative susceptibility mapping of multiple sclerosis lesions at various ages. Radiology 2014;271:183–92 doi:10.1148/radiol.13130353 pmid:24475808
    CrossRefPubMed
  47. 47.↵
    1. Harrison DM,
    2. Li X,
    3. Liu H, et al
    . Lesion heterogeneity on high-field susceptibility MRI is associated with multiple sclerosis severity. AJNR Am J Neuroradiol 2016;37:1447–53 doi:10.3174/ajnr.A4726 pmid:26939635
    Abstract/FREE Full Text
  48. 48.↵
    1. Dziedzic T,
    2. Metz I,
    3. Dallenga T, et al
    . Wallerian degeneration: a major component of early axonal pathology in multiple sclerosis. Brain Pathol 2010;20:976–85 doi:10.1111/j.1750-3639.2010.00401.x pmid:20477831
    CrossRefPubMedWeb of Science
  49. 49.↵
    1. Filippi M,
    2. Rocca MA,
    3. Barkhof F, et al
    ; Attendees of the Correlation between Pathological MRI Findings in MS Workshop. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol 2012;11:349–60 doi:10.1016/S1474-4422(12)70003-0 pmid:22441196
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. Lommers E,
    2. Simon J,
    3. Reuter G, et al
    . Multiparameter MRI quantification of microstructural tissue alterations in multiple sclerosis. Neuroimage Clin 2019;23:101879 doi:10.1016/j.nicl.2019.101879 pmid:31176293
    CrossRefPubMed
  51. 51.↵
    1. West J,
    2. Aalto A,
    3. Tisell A, et al
    . Normal-appearing and diffusely abnormal white matter in patients with multiple sclerosis assessed with quantitative MR. PLoS One 2014;9:e95161 doi:10.1371/journal.pone.0095161 pmid:24747946
    CrossRefPubMed
  52. 52.↵
    1. Chen W,
    2. Zhang Y,
    3. Mu K, et al
    . Quantifying the susceptibility variation of normal-appearing white matter in multiple sclerosis by quantitative susceptibility mapping. AJR Am J Roentgenol 2017;209:889–94 doi:10.2214/AJR.16.16851 pmid:28705068
    CrossRefPubMed
  53. 53.↵
    1. Cifelli A,
    2. Arridge M,
    3. Jezzard P, et al
    . Thalamic neurodegeneration in multiple sclerosis. Ann Neurol 2002;52:650–53 doi:10.1002/ana.10326 pmid:12402265
    CrossRefPubMedWeb of Science
  54. 54.↵
    1. Mahajan KR,
    2. Nakamura K,
    3. Cohen JA, et al
    . Intrinsic and extrinsic mechanisms of thalamic pathology in multiple sclerosis. Ann Neurol 2020;88:81–92 doi:10.1002/ana.25743 pmid:32286701
    CrossRefPubMed
  55. 55.↵
    1. Vercellino M,
    2. Masera S,
    3. Lorenzatti M, et al
    . Demyelination, inflammation, and neurodegeneration in multiple sclerosis deep gray matter. J Neuropathol Exp Neurol 2009;68:489–502 doi:10.1097/NEN.0b013e3181a19a5a pmid:19525897
    CrossRefPubMed
  56. 56.↵
    1. Elkady AM,
    2. Cobzas D,
    3. Sun H, et al
    . Five year iron changes in relapsing-remitting multiple sclerosis deep gray matter compared to healthy controls. Mult Scler Relat Disord 2019;33:107–15 doi:10.1016/j.msard.2019.05.028 pmid:31181540
    CrossRefPubMed
  57. 57.↵
    1. Hernández-Torres E,
    2. Wiggermann V,
    3. Machan L, et al
    . Increased mean R2* in the deep gray matter of multiple sclerosis patients: have we been measuring atrophy? J Magn Reson Imaging 2019;50:201–08 doi:10.1002/jmri.26561 pmid:30511803
    CrossRefPubMed
  58. 58.↵
    1. Khalil M,
    2. Langkammer C,
    3. Pichler A, et al
    . Dynamics of brain iron levels in multiple sclerosis: a longitudinal 3T MRI study. Neurology 2015;84:2396–2402 doi:10.1212/WNL.0000000000001679 pmid:25979698
    CrossRefPubMed
  59. 59.↵
    1. Pontillo G,
    2. Petracca M,
    3. Monti S, et al
    . Unraveling deep gray matter atrophy and iron and myelin changes in multiple sclerosis. AJNR Am J Neuroradiol 2021;42:1223–30 doi:10.3174/ajnr.A7093 pmid:33888456
    Abstract/FREE Full Text
  60. 60.↵
    1. Schweser F,
    2. Hagemeier J,
    3. Dwyer MG, et al
    . Decreasing brain iron in multiple sclerosis: the difference between concentration and content in iron MRI. Hum Brain Mapp 2021;42:1463–74 doi:10.1002/hbm.25306 pmid:33378095
    CrossRefPubMed
  61. 61.↵
    1. Zivadinov R,
    2. Tavazzi E,
    3. Bergsland N, et al
    . Brain iron at quantitative MRI is associated with disability in multiple sclerosis. Radiology 2018;289:487–96 doi:10.1148/radiol.2018180136 pmid:30015589
    CrossRefPubMed
  62. 62.↵
    1. Cobzas D,
    2. Sun H,
    3. Walsh AJ, et al
    . Subcortical gray matter segmentation and voxel-based analysis using transverse relaxation and quantitative susceptibility mapping with application to multiple sclerosis. J Magn Reson Imaging 2015;42:1601–10 doi:10.1002/jmri.24951 pmid:27418017
    CrossRefPubMed
  63. 63.↵
    1. Lebel RM,
    2. Eissa A,
    3. Seres P, et al
    . Quantitative high-field imaging of sub-cortical gray matter in multiple sclerosis. Mult Scler 2012;18:433–41 doi:10.1177/1352458511428464 pmid:22032862
    CrossRefPubMed
  64. 64.↵
    1. Rudko DA,
    2. Solovey I,
    3. Gati JS, et al
    . Multiple sclerosis: improved identification of disease-relevant changes in gray and white matter by using susceptibility-based MR imaging. Radiology 2014;272:851–64 doi:10.1148/radiol.14132475 pmid:24828000
    CrossRefPubMed
  65. 65.↵
    1. Walsh AJ,
    2. Blevins G,
    3. Lebel RM, et al
    . Longitudinal MR imaging of iron in multiple sclerosis: an imaging marker of disease. Radiology 2014;270:186–96 doi:10.1148/radiol.13130474 pmid:23925273
    CrossRefPubMed
  66. 66.↵
    1. Fujiwara E,
    2. Kmech JA,
    3. Cobzas D, et al
    . Cognitive implications of deep gray matter iron in multiple sclerosis. AJNR Am J Neuroradiol 2017;38:942–48 doi:10.3174/ajnr.A5109 pmid:28232497
    Abstract/FREE Full Text
  67. 67.↵
    1. Hallgren B,
    2. Sourander P
    . The effect of age on the non-haemin iron in the human brain. Neurochem 1958;3:41–51 doi:10.1111/j.1471-4159.1958.tb12607.x pmid:13611557
    CrossRefPubMedWeb of Science
  68. 68.↵
    1. Eshaghi A,
    2. Marinescu RV,
    3. Young AL, et al
    . Progression of regional grey matter atrophy in multiple sclerosis. Brain 2018;141:1665–77 doi:10.1093/brain/awy088 pmid:29741648
    CrossRefPubMed
  69. 69.↵
    1. Haider L,
    2. Simeonidou C,
    3. Steinberger G, et al
    . Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron. J Neurol Neurosurg Psychiatry 2014;85:1386–95 doi:10.1136/jnnp-2014-307712 pmid:24899728
    Abstract/FREE Full Text
  70. 70.↵
    1. Elkady AM,
    2. Cobzas D,
    3. Sun H, et al
    . Progressive iron accumulation across multiple sclerosis phenotypes revealed by sparse classification of deep gray matter. J Magn Reson Imaging 2017;46:1464–73 doi:10.1002/jmri.25682 pmid:28301067
    CrossRefPubMed
  71. 71.↵
    1. Ropele S,
    2. Kilsdonk ID,
    3. Wattjes MP, et al
    . Determinants of iron accumulation in deep grey matter of multiple sclerosis patients. Mult Scler 2014;20:1692–98 doi:10.1177/1352458514531085 pmid:24787429
    CrossRefPubMed
  72. 72.↵
    1. Hagemeier J,
    2. Zivadinov R,
    3. Dwyer MG, et al
    . Changes of deep gray matter magnetic susceptibility over 2 years in multiple sclerosis and healthy control brain. Neuroimage Clin 2018;18:1007–16 doi:10.1016/j.nicl.2017.04.008 pmid:29868452
    CrossRefPubMed
  73. 73.↵
    1. Haacke EM,
    2. Cheng NY,
    3. House MJ, et al
    . Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005;23:1–25 doi:10.1016/j.mri.2004.10.001 pmid:15733784
    CrossRefPubMedWeb of Science
  74. 74.↵
    1. Jonkman LE,
    2. Fleysher L,
    3. Steenwijk MD, et al
    . Ultra-high field MTR and qR2* differentiates subpial cortical lesions from normal-appearing gray matter in multiple sclerosis. Mult Scler 2016;22:1306–14 doi:10.1177/1352458515620499 pmid:26672996
    CrossRefPubMed
  75. 75.↵
    1. Yao B,
    2. Hametner S,
    3. van Gelderen P, et al
    . 7 Tesla magnetic resonance imaging to detect cortical pathology in multiple sclerosis. PLoS One 2014;9:e108863 doi:10.1371/journal.pone.0108863 pmid:25303286
    CrossRefPubMed
  76. 76.↵
    1. Peterson JW,
    2. Bö L,
    3. Mörk S, et al
    . Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 2001;50:389–400 doi:10.1002/ana.1123 pmid:11558796
    CrossRefPubMedWeb of Science
  77. 77.↵
    1. Fischer MT,
    2. Wimmer I,
    3. Höftberger R, et al
    . Disease-specific molecular events in cortical multiple sclerosis lesions. Brain 2013;136:1799–1815 doi:10.1093/brain/awt110 pmid:23687122
    CrossRefPubMedWeb of Science
  78. 78.↵
    1. Castellaro M,
    2. Magliozzi R,
    3. Palombit A, et al
    . Heterogeneity of cortical lesion susceptibility mapping in multiple sclerosis. AJNR Am J Neuroradiol 2017;38:1087–95 doi:10.3174/ajnr.A5150 pmid:28408633
    Abstract/FREE Full Text
  79. 79.↵
    1. Magliozzi R,
    2. Howell OW,
    3. Reeves C, et al
    . A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol 2010;68:477–93 doi:10.1002/ana.22230 pmid:20976767
    CrossRefPubMedWeb of Science
  80. 80.↵
    1. Fukunaga M,
    2. Li TQ,
    3. van Gelderen P, et al
    . Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proc Natl Acad Sci U S A 2010;107:3834–39 doi:10.1073/pnas.0911177107 pmid:20133720
    Abstract/FREE Full Text
  81. 81.↵
    1. Bagnato F,
    2. Hametner S,
    3. Boyd E, et al
    . Untangling the R2* contrast in multiple sclerosis: a combined MRI-histology study at 7.0 Tesla. PLoS One 2018;13:e0193839 doi:10.1371/journal.pone.0193839 pmid:29561895
    CrossRefPubMed
  82. 82.↵
    1. Magliozzi R,
    2. Reynolds R,
    3. Calabrese M
    . MRI of cortical lesions and its use in studying their role in MS pathogenesis and disease course. Brain Pathol 2018;28:735–42 doi:10.1111/bpa.12642 pmid:30020563
    CrossRefPubMed
  83. 83.↵
    1. Lema Dopico A,
    2. Choi S,
    3. Hua J, et al
    . Multi-layer analysis of quantitative 7 T magnetic resonance imaging in the cortex of multiple sclerosis patients reveals pathology associated with disability. Mult Scler 2021;27:2040–51 doi:10.1177/1352458521994556 pmid:33596719
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 43 (12)
American Journal of Neuroradiology
Vol. 43, Issue 12
1 Dec 2022
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Quantitative MRI in Multiple Sclerosis: From Theory to Application
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
M. Tranfa, G. Pontillo, M. Petracca, A. Brunetti, E. Tedeschi, G. Palma, S. Cocozza
Quantitative MRI in Multiple Sclerosis: From Theory to Application
American Journal of Neuroradiology Dec 2022, 43 (12) 1688-1695; DOI: 10.3174/ajnr.A7536

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Quantitative MRI in Multiple Sclerosis
M. Tranfa, G. Pontillo, M. Petracca, A. Brunetti, E. Tedeschi, G. Palma, S. Cocozza
American Journal of Neuroradiology Dec 2022, 43 (12) 1688-1695; DOI: 10.3174/ajnr.A7536
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (11)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Advanced Quantitative MRI Unveils Microstructural Thalamic Changes Reflecting Disease Progression in Multiple Sclerosis
    Alessandro Cagol, Mario Ocampo-Pineda, Po-Jui Lu, Matthias Weigel, Muhamed Barakovic, Lester Melie-Garcia, Xinjie Chen, Antoine Lutti, Pasquale Calabrese, Jens Kuhle, Ludwig Kappos, Maria Pia Sormani, Cristina Granziera
    Neurology Neuroimmunology & Neuroinflammation 2024 11 6
  • Exploring the Pathophysiology, Diagnosis, and Treatment Options of Multiple Sclerosis
    Simone Lorenzut, Ilaria Del Negro, Giada Pauletto, Lorenzo Verriello, Leopoldo Spadea, Carlo Salati, Mutali Musa, Caterina Gagliano, Marco Zeppieri
    Journal of Integrative Neuroscience 2025 24 1
  • Quantitative myelin water assessment for multiple sclerosis using multi‐inversion magnetic resonance fingerprinting
    Yingying Lin, Koon‐Ho Chan, Henry Ka‐Fung Mak, Krystal Xiwing Yau, Peng Cao
    Medical Physics 2025 52 1
  • Magnetic resonance metrics for identification of cuprizone-induced demyelination in the mouse model of neurodegeneration: a review
    Emma Friesen, Kamya Hari, Maxina Sheft, Jonathan D. Thiessen, Melanie Martin
    Magnetic Resonance Materials in Physics, Biology and Medicine 2024 37 5
  • In vivo demonstration of globotriaosylceramide brain accumulation in Fabry Disease using MR Relaxometry
    Giuseppe Pontillo, Mario Tranfa, Alessandra Scaravilli, Serena Monti, Ivana Capuano, Eleonora Riccio, Manuela Rizzo, Arturo Brunetti, Giuseppe Palma, Antonio Pisani, Sirio Cocozza
    Neuroradiology 2024 66 9
  • Mapping motor and extra-motor gray and white matter changes in ALS: a comprehensive review of MRI insights
    Valentina Virginia Iuzzolino, Alessandra Scaravilli, Guglielmo Carignani, Gianmaria Senerchia, Giuseppe Pontillo, Raffaele Dubbioso, Sirio Cocozza
    Neuroradiology 2025
  • Sensitivity of multi-parametric quantitative magnetic resonance imaging for multiple sclerosis pathology
    Sarah Schlaeger, Mark Mühlau, Guillaume Gilbert, Irene Vavasour, Thomas Amthor, Mariya Doneva, Aurore Menegaux, Maria Mora, Markus Lauerer, Viola Pongratz, Claus Zimmer, Benedikt Wiestler, Jan S. Kirschke, Christine Preibisch, Ronja C. Berg, Md Nasir Uddin,
    PLOS ONE 2025 20 4
  • Simulation of acquisition shifts in T2 weighted fluid-attenuated inversion recovery magnetic resonance images to stress test artificial intelligence segmentation networks
    Christiane Posselt, Mehmet Yigit Avci, Mehmet Yigitsoy, Patrick Schuenke, Christoph Kolbitsch, Tobias Schaeffter, Stefanie Remmele
    Journal of Medical Imaging 2024 11 02
  • The rising role of magnetic resonance imaging biomarkers in diagnosing multiple sclerosis
    Giuseppe Pontillo, Sirio Cocozza
    European Radiology 2023 33 11
  • Tract-wise microstructural analysis informs on current and future disability in early multiple sclerosis
    Veronica Ravano, Gian Franco Piredda, Jan Krasensky, Michaela Andelova, Tomas Uher, Barbora Srpova, Eva Kubala Havrdova, Karolina Vodehnalova, Dana Horakova, Petra Nytrova, Jonathan A. Disselhorst, Tom Hilbert, Bénédicte Maréchal, Jean-Philippe Thiran, Tobias Kober, Jonas Richiardi, Manuela Vaneckova
    Journal of Neurology 2024 271 2

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • NCCT vs. MRI for Brain Atrophy in Acute Stroke
  • Clinical Outcomes After Chiari I Decompression
Show more ADULT BRAIN

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire