Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain
Open Access

3D Quantitative Synthetic MRI in the Evaluation of Multiple Sclerosis Lesions

S. Fujita, K. Yokoyama, A. Hagiwara, S. Kato, C. Andica, K. Kamagata, N. Hattori, O. Abe and S. Aoki
American Journal of Neuroradiology March 2021, 42 (3) 471-478; DOI: https://doi.org/10.3174/ajnr.A6930
S. Fujita
aFrom the Departments of Radiology (S.F., A.H., S.K., C.A., K.K., S.A.)
cDepartment of Radiology (S.F., S.K., O.A.), The University of Tokyo, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Fujita
K. Yokoyama
bNeurology (K.Y., N.H.), Juntendo University, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Yokoyama
A. Hagiwara
aFrom the Departments of Radiology (S.F., A.H., S.K., C.A., K.K., S.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Hagiwara
S. Kato
aFrom the Departments of Radiology (S.F., A.H., S.K., C.A., K.K., S.A.)
cDepartment of Radiology (S.F., S.K., O.A.), The University of Tokyo, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Kato
C. Andica
aFrom the Departments of Radiology (S.F., A.H., S.K., C.A., K.K., S.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Andica
K. Kamagata
aFrom the Departments of Radiology (S.F., A.H., S.K., C.A., K.K., S.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Kamagata
N. Hattori
bNeurology (K.Y., N.H.), Juntendo University, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Hattori
O. Abe
cDepartment of Radiology (S.F., S.K., O.A.), The University of Tokyo, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for O. Abe
S. Aoki
aFrom the Departments of Radiology (S.F., A.H., S.K., C.A., K.K., S.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Aoki
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Brownlee WJ,
    2. Hardy TA,
    3. Fazekas F, et al
    . Diagnosis of multiple sclerosis: progress and challenges. Lancet 2017;389:1336–46 doi:10.1016/S0140-6736(16)30959-X pmid:27889190
    CrossRefPubMed
  2. 2.↵
    1. Reich DS,
    2. Lucchinetti CF,
    3. Calabresi PA
    . Multiple sclerosis. N Engl J Med 2018;378:169–80 doi:10.1056/NEJMra1401483 pmid:29320652
    CrossRefPubMed
  3. 3.↵
    1. Filippi M,
    2. Preziosa P,
    3. Banwell BL, et al
    . Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain 2019;142:1858–75 doi:10.1093/brain/awz144 pmid:31209474
    CrossRefPubMed
  4. 4.↵
    1. Calabrese M,
    2. Filippi M,
    3. Gallo P
    . Cortical lesions in multiple sclerosis. Nat Rev Neurol 2010;6:438–44 doi:10.1038/nrneurol.2010.93 pmid:20625376
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Harrison DM,
    2. Roy S,
    3. Oh J, et al
    . Association of cortical lesion burden on 7-T magnetic resonance imaging with cognition and disability in multiple sclerosis. JAMA Neurol 2015;72:1004–12 doi:10.1001/jamaneurol.2015.1241 pmid:26192316
    CrossRefPubMed
  6. 6.↵
    1. Traboulsee A,
    2. Simon JH,
    3. Stone L, et al
    . Revised Recommendations of the Consortium of MS Centers Task Force for a Standardized MRI Protocol and Clinical Guidelines for the Diagnosis and Follow-Up of Multiple Sclerosis. AJNR Am J Neuroradiol 2016;37:394–401 doi:10.3174/ajnr.A4539 pmid:26564433
    Abstract/FREE Full Text
  7. 7.↵
    1. Sethi V,
    2. Yousry TA,
    3. Muhlert N, et al
    . Improved detection of cortical MS lesions with phase-sensitive inversion recovery MRI. J Neurol Neurosurg Psychiatry 2012;83:877–82 doi:10.1136/jnnp-2012-303023 pmid:22807559
    Abstract/FREE Full Text
  8. 8.↵
    1. Geurts JJ,
    2. Pouwels PJW,
    3. Uitdehaag BM, et al
    . Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology 2005;236:254–60 doi:10.1148/radiol.2361040450 pmid:15987979
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Wallaert L,
    2. Hagiwara A,
    3. Andica C, et al
    . The advantage of synthetic MRI for the visualization of anterior temporal pole lesions on double inversion recovery (DIR), phase-sensitive inversion recovery (PSIR), and myelin images in a patient with CADASIL. Magn Reson Med Sci 2018;17:275–76 doi:10.2463/mrms.ci.2017-0110 pmid:29238005
    CrossRefPubMed
  10. 10.↵
    1. Forslin Y,
    2. Bergendal A,
    3. Hashim F, et al
    . Detection of leukocortical lesions in multiple sclerosis and their association with physical and cognitive impairment: a comparison of conventional and synthetic phase-sensitive inversion recovery MRI. AJNR Am J Neuroradiol 2018;39:1995–2000 doi:10.3174/ajnr.A5815 pmid:30262646
    Abstract/FREE Full Text
  11. 11.↵
    1. Hagiwara A,
    2. Hori M,
    3. Yokoyama K, et al
    . Synthetic MRI in the detection of multiple sclerosis plaques. AJNR Am J Neuroradiol 2017;38:257–63 doi:10.3174/ajnr.A5012 pmid:27932506
    Abstract/FREE Full Text
  12. 12.↵
    1. Hagiwara A,
    2. Warntjes M,
    3. Hori M, et al
    . SyMRI of the brain: rapid quantification of relaxation rates and proton density, with synthetic MRI, automatic brain segmentation, and myelin measurement. Invest Radiol 2017;52:647–57 doi:10.1097/RLI.0000000000000365 pmid:28257339
    CrossRefPubMed
  13. 13.↵
    1. Warntjes JBM,
    2. Leinhard OD,
    3. West J, et al
    . Rapid magnetic resonance quantification on the brain: optimization for clinical usage. Magn Reson Med 2008;60:320–29 doi:10.1002/mrm.21635 pmid:18666127
    CrossRefPubMed
  14. 14.↵
    1. Krauss W,
    2. Gunnarsson M,
    3. Nilsson M, et al
    . Conventional and synthetic MRI in multiple sclerosis: a comparative study. Eur Radiol 2018;28:1692–700 doi:10.1007/s00330-017-5100-9 pmid:29134354
    CrossRefPubMed
  15. 15.↵
    1. Fujita S,
    2. Hagiwara A,
    3. Hori M, et al
    . 3D quantitative synthetic MRI-derived cortical thickness and subcortical brain volumes: scan-rescan repeatability and comparison with conventional T1-weighted images. J Magn Reson Imaging 2019;50:1834–42 doi:10.1002/jmri.26744 pmid:30968991
    CrossRefPubMed
  16. 16.↵
    1. Fujita S,
    2. Hagiwara A,
    3. Hori M, et al
    . Three-dimensional high-resolution simultaneous quantitative mapping of the whole brain with 3D-QALAS: an accuracy and repeatability study. Magn Reson Imaging 2019;63:235–43 doi:10.1016/j.mri.2019.08.031 pmid:31445118
    CrossRefPubMed
  17. 17.↵
    1. Kvernby S,
    2. Warntjes MJB,
    3. Haraldsson H, et al
    . Simultaneous three-dimensional myocardial T1 and T2 mapping in one breath hold with 3D-QALAS. J Cardiovasc Magn Reson 2014;16:102 doi:10.1186/s12968-014-0102-0 pmid:25526880
    CrossRefPubMed
  18. 18.↵
    1. Thompson AJ,
    2. Banwell BL,
    3. Barkhof F, et al
    . Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018;17:162–73 doi:10.1016/S1474-4422(17)30470-2 pmid:29275977
    CrossRefPubMed
  19. 19.↵
    1. Krupa K,
    2. Bekiesińska-Figatowska M
    . Artifacts in magnetic resonance imaging. Pol J Radiol 2015;80:93–106 doi:10.12659/PJR.892628 pmid:25745524
    CrossRefPubMed
  20. 20.↵
    1. Tanenbaum LN,
    2. Tsiouris AJ,
    3. Johnson AN, et al
    . Synthetic MRI for clinical neuroimaging: results of the magnetic resonance image compilation (MAGiC) prospective, multicenter, multireader trial. AJNR Am J Neuroradiol 2017;38:1103–10 doi:10.3174/ajnr.A5227 pmid:28450439
    Abstract/FREE Full Text
  21. 21.↵
    1. Schmidt P,
    2. Gaser C,
    3. Arsic M, et al
    . An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. Neuroimage 2012;59:3774–83 doi:10.1016/j.neuroimage.2011.11.032 pmid:22119648
    CrossRefPubMed
  22. 22.↵
    1. Fenster A,
    2. Chiu B
    . Evaluation of segmentation algorithms for medical imaging. Conf Proc IEEE Eng Med Biol Soc 2005;2005:7186–89 doi:10.1109/IEMBS.2005.1616166 pmid:17281935
    CrossRefPubMed
  23. 23.↵
    1. Landis JR,
    2. Koch GG
    . The measurement of observer agreement for categorical data. Biometrics 1977;33:159–74 doi:10.1109/IEMBS.2005.1616166 pmid:843571
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Finck T,
    2. Li H,
    3. Grundl L, et al
    . Deep-learning generated synthetic double inversion recovery images improve multiple sclerosis lesion detection. Invest Radiol 2020;55:318–23 doi:10.1097/RLI.0000000000000640 pmid:31977602
    CrossRefPubMed
  25. 25.↵
    1. Hagiwara A,
    2. Otsuka Y,
    3. Hori M, et al
    . Improving the quality of synthetic FLAIR images with deep learning using a conditional generative adversarial network for pixel-by-pixel image translation. AJNR Am J Neuroradiol 2019;40:224–30 doi:10.3174/ajnr.A5927 pmid:30630834
    Abstract/FREE Full Text
  26. 26.↵
    1. Fujita S,
    2. Hagiwara A,
    3. Otsuka Y, et al
    . Deep learning approach for generating MRA images from 3D quantitative synthetic MRI without additional scans. Invest Radiol 2020;55:249–56 doi:10.1097/RLI.0000000000000628 pmid:31977603
    CrossRefPubMed
  27. 27.↵
    1. Hagiwara A,
    2. Fujita S,
    3. Ohno Y, et al
    . Variability and standardization of quantitative imaging: monoparametric to multiparametric quantification, radiomics, and artificial intelligence. Invest Radiol 2020;55:601–16 doi:10.1097/RLI.0000000000000666 pmid:32209816
    CrossRefPubMed
  28. 28.↵
    1. Blystad I,
    2. Hakansson I,
    3. Tisell A, et al
    . Quantitative MRI for analysis of active multiple sclerosis lesions without gadolinium-based contrast agent. AJNR Am J Neuroradiol 2016;37:94–100 doi:10.3174/ajnr.A4501 pmid:26471751
    Abstract/FREE Full Text
  29. 29.↵
    1. Rovira A,
    2. Wattjes MP,
    3. Tintore M
    , MAGNIMS study group, et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-clinical implementation in the diagnostic process. Nat Rev Neurol 2015;11:471–82 doi:10.1038/nrneurol.2015.106 pmid:26149978
    CrossRefPubMed
  30. 30.↵
    1. Lustig M,
    2. Donoho D,
    3. Pauly JM
    . Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182–95 doi:10.1002/mrm.21391 pmid:17969013
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 42 (3)
American Journal of Neuroradiology
Vol. 42, Issue 3
1 Mar 2021
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
3D Quantitative Synthetic MRI in the Evaluation of Multiple Sclerosis Lesions
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
S. Fujita, K. Yokoyama, A. Hagiwara, S. Kato, C. Andica, K. Kamagata, N. Hattori, O. Abe, S. Aoki
3D Quantitative Synthetic MRI in the Evaluation of Multiple Sclerosis Lesions
American Journal of Neuroradiology Mar 2021, 42 (3) 471-478; DOI: 10.3174/ajnr.A6930

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
3D Quantitative Synthetic MRI in the Evaluation of Multiple Sclerosis Lesions
S. Fujita, K. Yokoyama, A. Hagiwara, S. Kato, C. Andica, K. Kamagata, N. Hattori, O. Abe, S. Aoki
American Journal of Neuroradiology Mar 2021, 42 (3) 471-478; DOI: 10.3174/ajnr.A6930
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Brain Parcellation Repeatability and Reproducibility Using Conventional and Quantitative 3D MR Imaging
  • Crossref (26)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Multiple sclerosis
    Dejan Jakimovski, Stefan Bittner, Robert Zivadinov, Sarah A Morrow, Ralph HB Benedict, Frauke Zipp, Bianca Weinstock-Guttman
    The Lancet 2024 403 10422
  • Synthetic MR: Physical principles, clinical implementation, and new developments
    Ken‐Pin Hwang, Shohei Fujita
    Medical Physics 2022 49 7
  • Thin-slice Two-dimensional T2-weighted Imaging with Deep Learning-based Reconstruction: Improved Lesion Detection in the Brain of Patients with Multiple Sclerosis
    Masatoshi Iwamura, Satoru Ide, Kenya Sato, Akihisa Kakuta, Soichiro Tatsuo, Atsushi Nozaki, Tetsuya Wakayama, Tatsuya Ueno, Rie Haga, Misako Kakizaki, Yoko Yokoyama, Ryoichi Yamauchi, Fumiyasu Tsushima, Koichi Shibutani, Masahiko Tomiyama, Shingo Kakeda
    Magnetic Resonance in Medical Sciences 2024 23 2
  • Highly accelerated 3D MPRAGE using deep neural network–based reconstruction for brain imaging in children and young adults
    Woojin Jung, JeeYoung Kim, Jingyu Ko, Geunu Jeong, Hyun Gi Kim
    European Radiology 2022 32 8
  • SSL‐QALAS: Self‐Supervised Learning for rapid multiparameter estimation in quantitative MRI using 3D‐QALAS
    Yohan Jun, Jaejin Cho, Xiaoqing Wang, Michael Gee, P. Ellen Grant, Berkin Bilgic, Borjan Gagoski
    Magnetic Resonance in Medicine 2023 90 5
  • Zero‐DeepSub: Zero‐shot deep subspace reconstruction for rapid multiparametric quantitative MRI using 3D‐QALAS
    Yohan Jun, Yamin Arefeen, Jaejin Cho, Shohei Fujita, Xiaoqing Wang, P. Ellen Grant, Borjan Gagoski, Camilo Jaimes, Michael S. Gee, Berkin Bilgic
    Magnetic Resonance in Medicine 2024 91 6
  • 3D MRI of the Spine
    Meghan Sahr, Ek Tsoon Tan, Darryl B. Sneag
    Seminars in Musculoskeletal Radiology 2021 25 03
  • Synthetic MRI in children with tuberous sclerosis complex
    Gokcen Coban, Ekim Gumeler, Safak Parlak, Bahadir Konuskan, Jale Karakaya, Dilek Yalnizoglu, Banu Anlar, Kader K. Oguz
    Insights into Imaging 2022 13 1
  • Multiparametric MRI
    Akifumi Hagiwara, Shohei Fujita, Ryo Kurokawa, Christina Andica, Koji Kamagata, Shigeki Aoki
    Investigative Radiology 2023
  • Beyond the Conventional Structural MRI
    Yangsean Choi, Ji Su Ko, Ji Eun Park, Geunu Jeong, Minkook Seo, Yohan Jun, Shohei Fujita, Berkin Bilgic
    Investigative Radiology 2025 60 1

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Cerebral ADC Changes in Fabry Disease
  • ML for Glioma Molecular Subtype Prediction
Show more ADULT BRAIN

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire