Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates


Improved Turnaround Times | Median time to first decision: 12 days

Research ArticleAdult Brain
Open Access

The Use of Noncontrast Quantitative MRI to Detect Gadolinium-Enhancing Multiple Sclerosis Brain Lesions: A Systematic Review and Meta-Analysis

A. Gupta, K. Al-Dasuqi, F. Xia, G. Askin, Y. Zhao, D. Delgado and Y. Wang
American Journal of Neuroradiology July 2017, 38 (7) 1317-1322; DOI: https://doi.org/10.3174/ajnr.A5209
A. Gupta
aFrom the Department of Radiology (A.G., K.A.-D., F.X., Y.W.)
bClinical and Translational Neuroscience Unit (A.G.), Feil Family Brain and Mind Research Institute
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Gupta
K. Al-Dasuqi
aFrom the Department of Radiology (A.G., K.A.-D., F.X., Y.W.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Al-Dasuqi
F. Xia
aFrom the Department of Radiology (A.G., K.A.-D., F.X., Y.W.)
eDepartment of Biomedical Engineering (F.X., Y.W.), Cornell University, Ithaca, New York.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F. Xia
G. Askin
cDepartment of Healthcare Policy and Research (G.A., Y.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Askin
Y. Zhao
cDepartment of Healthcare Policy and Research (G.A., Y.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Zhao
D. Delgado
dSamuel J. Wood Library and C.V. Starr Biomedical Information Center (D.D.), Weill Cornell Medicine, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Delgado
Y. Wang
aFrom the Department of Radiology (A.G., K.A.-D., F.X., Y.W.)
eDepartment of Biomedical Engineering (F.X., Y.W.), Cornell University, Ithaca, New York.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Wang
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Stojanov DA,
    2. Aracki-Trenkic A,
    3. Vojinovic S, et al
    . Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol. Eur Radiol 2016;26:807–15 doi:10.1007/s00330-015-3879-9 pmid:26105022
    CrossRefPubMed
  2. 2.↵
    1. Schlemm L,
    2. Chien C,
    3. Bellmann-Strobl J, et al
    . Gadopentetate but not gadobutrol accumulates in the dentate nucleus of multiple sclerosis patients. Mult Scler 2016 Sep 1. [Epub ahead of print] doi:10.1177/1352458516670738 pmid:27679460
    CrossRefPubMed
  3. 3.↵
    1. Roccatagliata L,
    2. Vuolo L,
    3. Bonzano L, et al
    . Multiple sclerosis: hyperintense dentate nucleus on unenhanced T1-weighted MR images is associated with the secondary progressive subtype. Radiology 2009;251:503–10 doi:10.1148/radiol.2511081269 pmid:19401576
    CrossRefPubMed
  4. 4.↵
    1. Malayeri AA,
    2. Brooks KM,
    3. Bryant LH, et al
    . National Institutes of Health Perspective on Reports of Gadolinium Deposition in the Brain. J Am Coll Radiol 2016;13:237–41 doi:10.1016/j.jacr.2015.11.009 pmid:26810815
    CrossRefPubMed
  5. 5.↵
    1. Polman CH,
    2. Reingold SC,
    3. Edan G, et al
    . Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria.” Ann Neurol 2005;58:840–46 doi:10.1002/ana.20703 pmid:16283615
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Stroup DF,
    2. Berlin JA,
    3. Morton SC, et al
    . Meta-analysis of observational studies in epidemiology: a proposal for reporting–Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000;283:2008–12 doi:10.1001/jama.283.15.2008 pmid:10789670
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Liberati A,
    2. Altman DG,
    3. Tetzlaff J, et al
    . The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 2009;151:W65–94 pmid:19622512
    PubMed
  8. 8.↵
    1. Bammer R,
    2. Augustin M,
    3. Strasser-Fuchs S, et al
    . Magnetic resonance diffusion tensor imaging for characterizing diffuse and focal white matter abnormalities in multiple sclerosis. Magn Reson Med 2000;44:583–91 doi:10.1002/1522-2594(200010)44:4<583::AID-MRM12>3.0.CO%3B2-O pmid:11025514
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Blystad I,
    2. Hakansson I,
    3. Tisell A, et al
    . Quantitative MRI for analysis of active multiple sclerosis lesions without gadolinium-based contrast agent. AJNR Am J Neuroradiol 2016;37:94–100 doi:10.3174/ajnr.A4501 pmid:26471751
    Abstract/FREE Full Text
  10. 10.↵
    1. Droogan AG,
    2. Clark CA,
    3. Werring DJ, et al
    . Comparison of multiple sclerosis clinical subgroups using navigated spin echo diffusion-weighted imaging. Magn Reson Imaging 1999;17:653–61 doi:10.1016/S0730-725X(99)00011-9 pmid:10372518
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Faizy TD,
    2. Thaler C,
    3. Kumar D, et al
    . Heterogeneity of multiple sclerosis lesions in multislice myelin water imaging. PLoS One 2016;11:e0151496 doi:10.1371/journal.pone.0151496 pmid:26990645
    CrossRefPubMed
  12. 12.↵
    1. Fazekas F,
    2. Ropele S,
    3. Enzinger C, et al
    . Quantitative magnetization transfer imaging of pre-lesional white-matter changes in multiple sclerosis. Mult Scler 2002;8:479–84 doi:10.1191/1352458502ms860oa pmid:12474987
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Filippi M,
    2. Cercignani M,
    3. Inglese M, et al
    . Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 2001;56:304–11 doi:10.1212/WNL.56.3.304 pmid:11171893
    Abstract/FREE Full Text
  14. 14.↵
    1. Filippi M,
    2. Iannucci G,
    3. Cercignani M, et al
    . A quantitative study of water diffusion in multiple sclerosis lesions and normal-appearing white matter using echo-planar imaging. Arch Neurol 2000;57:1017–21 doi:10.1001/archneur.57.7.1017 pmid:10891984
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Filippi M,
    2. Rocca MA,
    3. Martino G, et al
    . Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 1998;43:809–14 doi:10.1002/ana.410430616 pmid:9629851
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Fox RJ,
    2. Cronin T,
    3. Lin J, et al
    . Measuring myelin repair and axonal loss with diffusion tensor imaging. AJNR Am J Neuroradiol 2011;32:85–91 doi:10.3174/ajnr.A2238 pmid:20947644
    Abstract/FREE Full Text
  17. 17.↵
    1. Giacomini PS,
    2. Levesque IR,
    3. Ribeiro L, et al
    . Measuring demyelination and remyelination in acute multiple sclerosis lesion voxels. Arch Neurol 2009;66:375–81 pmid:19273757
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Goodkin DE,
    2. Rooney WD,
    3. Sloan R, et al
    . A serial study of new MS lesions and the white matter from which they arise. Neurology 1998;51:1689–97 doi:10.1212/WNL.51.6.1689 pmid:9855524
    Abstract/FREE Full Text
  19. 19.↵
    1. Hiehle JF Jr.,
    2. Grossman RI,
    3. Ramer KN, et al
    . Magnetization transfer effects in MR-detected multiple sclerosis lesions: comparison with gadolinium-enhanced spin-echo images and nonenhanced T1-weighted images. AJNR Am J Neuroradiol 1995;16:69–77 pmid:7900604
    Abstract
  20. 20.↵
    1. Jurcoane A,
    2. Wagner M,
    3. Schmidt C, et al
    . Within-lesion differences in quantitative MRI parameters predict contrast enhancement in multiple sclerosis. J Magn Reson Imaging 2013;38:1454–61 doi:10.1002/jmri.24107 pmid:23554005
    CrossRefPubMed
  21. 21.↵
    1. Levesque IR,
    2. Giacomini PS,
    3. Narayanan S, et al
    . Quantitative magnetization transfer and myelin water imaging of the evolution of acute multiple sclerosis lesions. Magn Reson Med 2010;63:633–40 doi:10.1002/mrm.22244 pmid:20146232
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Liu Y,
    2. Mitchell PJ,
    3. Kilpatrick TJ, et al
    . Diffusion tensor imaging of acute inflammatory lesion evolution in multiple sclerosis. J Clin Neurosci 2012;19:1689–94 doi:10.1016/j.jocn.2012.03.022 pmid:23084347
    CrossRefPubMed
  23. 23.↵
    1. Michoux N,
    2. Guillet A,
    3. Rommel D, et al
    . Texture analysis of T2-weighted MR images to assess acute inflammation in brain MS lesions. PLoS One 2015;10:e0145497 doi:10.1371/journal.pone.0145497 pmid:26693908
    CrossRefPubMed
  24. 24.↵
    1. Naismith RT,
    2. Xu J,
    3. Tutlam NT, et al
    . Increased diffusivity in acute multiple sclerosis lesions predicts risk of black hole. Neurology 2010;74:1694–701 doi:10.1212/WNL.0b013e3181e042c4 pmid:20498437
    Abstract/FREE Full Text
  25. 25.↵
    1. Nusbaum AO,
    2. Lu D,
    3. Tang CY, et al
    . Quantitative diffusion measurements in focal multiple sclerosis lesions: correlations with appearance on T1-weighted MR images. AJR Am J Roentgenol 2000;175:821–25 doi:10.2214/ajr.175.3.1750821 pmid:10954474
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Oh J,
    2. Han ET,
    3. Lee MC, et al
    . Multislice brain myelin water fractions at 3T in multiple sclerosis. J Neuroimaging 2007;17:156–63 doi:10.1111/j.1552-6569.2007.00098.x pmid:17441837
    CrossRefPubMed
  27. 27.↵
    1. Papanikolaou N,
    2. Papadaki E,
    3. Karampekios S, et al
    . T2 relaxation time analysis in patients with multiple sclerosis: correlation with magnetization transfer ratio. Eur Radiol 2004;14:115–22 doi:10.1007/s00330-003-1946-0 pmid:14600774
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Petrella JR,
    2. Grossman RI,
    3. McGowan JC, et al
    . Multiple sclerosis lesions: relationship between MR enhancement pattern and magnetization transfer effect. AJNR Am J Neuroradiol 1996;17:1041–49 pmid:8791914
    Abstract
  29. 29.↵
    1. Phuttharak W,
    2. Galassi W,
    3. Laopaiboon V, et al
    . ADC measurements in various patterns of multiple sclerosis lesions. J Med Assoc Thai 2006;89:196–204 pmid:16579006
    PubMed
  30. 30.↵
    1. Pike GB,
    2. De Stefano N,
    3. Narayanan S, et al
    . Multiple sclerosis: magnetization transfer MR imaging of white matter before lesion appearance on T2-weighted images. Radiology 2000;215:824–30 doi:10.1148/radiology.215.3.r00jn02824 pmid:10831705
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Rovira A,
    2. Alonso J,
    3. Cucurella G, et al
    . Evolution of multiple sclerosis lesions on serial contrast-enhanced T1-weighted and magnetization-transfer MR images. AJNR Am J Neuroradiol 1999;20:1939–45 pmid:10588122
    Abstract/FREE Full Text
  32. 32.↵
    1. Roychowdhury S,
    2. Maldjian JA,
    3. Grossman RI
    . Multiple sclerosis: comparison of trace apparent diffusion coefficients with MR enhancement pattern of lesions. AJNR Am J Neuroradiol 2000;21:869–74 pmid:10815662
    Abstract/FREE Full Text
  33. 33.↵
    1. Sahin T,
    2. Bozgeyik Z,
    3. Menzilcioglu MS, et al
    . Importance of diffusion weighted magnetic resonance imaging in evaluation of the treatment efficacy in multiple sclerosis patients with acute attacks. Pol J Radiol 2015;80:544–48 doi:10.12659/PJR.895325 pmid:26740826
    CrossRefPubMed
  34. 34.↵
    1. Testaverde L,
    2. Caporali L,
    3. Venditti E, et al
    . Diffusion tensor imaging applications in multiple sclerosis patients using 3T magnetic resonance: a preliminary study. Eur Radiol 2012;22:990–97 doi:10.1007/s00330-011-2342-9 pmid:22160194
    CrossRefPubMed
  35. 35.↵
    1. Tievsky AL,
    2. Ptak T,
    3. Farkas J
    . Investigation of apparent diffusion coefficient and diffusion tensor anisotropy in acute and chronic multiple sclerosis lesions. AJNR Am J Neuroradiol 1999;20:1491–99 pmid:10512236
    Abstract/FREE Full Text
  36. 36.↵
    1. van den Elskamp IJ,
    2. Knol DL,
    3. Vrenken H, et al
    . Lesional magnetization transfer ratio: a feasible outcome for remyelinating treatment trials in multiple sclerosis. Mult Scler 2010;16:660–69 doi:10.1177/1352458510364630 pmid:20350960
    CrossRefPubMed
  37. 37.↵
    1. van Waesberghe JH,
    2. van Walderveen MA,
    3. Castelijns JA, et al
    . Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization transfer MR. AJNR Am J Neuroradiol 1998;19:675–83 pmid:9576653
    Abstract
  38. 38.↵
    1. Vargas WS,
    2. Monohan E,
    3. Pandya S, et al
    . Measuring longitudinal myelin water fraction in new multiple sclerosis lesions. Neuroimage Clin 2015;9:369–75 doi:10.1016/j.nicl.2015.09.003 pmid:26594620
    CrossRefPubMed
  39. 39.↵
    1. Vavasour IM,
    2. Laule C,
    3. Li DK, et al
    . Is the magnetization transfer ratio a marker for myelin in multiple sclerosis? J Magn Reson Imaging 2011;33:713–18 doi:10.1002/jmri.22441 pmid:21563257
    CrossRefPubMed
  40. 40.↵
    1. Werring DJ,
    2. Clark CA,
    3. Barker GJ, et al
    . Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 1999;52:1626–32 doi:10.1212/WNL.52.8.1626 pmid:10331689
    Abstract/FREE Full Text
  41. 41.↵
    1. Wiggermann V,
    2. Hernández Torres E,
    3. Vavasour IM, et al
    . Magnetic resonance frequency shifts during acute MS lesion formation. Neurology 2013;81:211–18 doi:10.1212/WNL.0b013e31829bfd63 pmid:23761621
    Abstract/FREE Full Text
  42. 42.↵
    1. Yurtsever I,
    2. Hakyemez B,
    3. Taskapilioglu O, et al
    . The contribution of diffusion-weighted MR imaging in multiple sclerosis during acute attack. Eur J Radiol 2008;65:421–26 doi:10.1016/j.ejrad.2007.05.002 pmid:17587524
    CrossRefPubMed
  43. 43.↵
    1. Zhang Y,
    2. Gauthier SA,
    3. Gupta A, et al
    . Longitudinal change in magnetic susceptibility of new enhanced multiple sclerosis (MS) lesions measured on serial quantitative susceptibility mapping (QSM). J Magn Reson Imaging 2016;44:426–32 doi:10.1002/jmri.25144 pmid:26800367
    CrossRefPubMed
  44. 44.↵
    1. Zivadinov R,
    2. Bergsland N,
    3. Stosic M, et al
    . Use of perfusion- and diffusion-weighted imaging in differential diagnosis of acute and chronic ischemic stroke and multiple sclerosis. Neurol Res 2008;30:816–26 doi:10.1179/174313208X341003 pmid:18826808
    CrossRefPubMedWeb of Science
  45. 45.↵
    1. Zhang Y,
    2. Gauthier SA,
    3. Gupta A, et al
    . Magnetic susceptibility from quantitative susceptibility mapping can differentiate new enhancing from nonenhancing multiple sclerosis lesions without gadolinium injection. AJNR Am J Neuroradiol 2016 Jun 30. [Epub ahead of print] pmid:27365331
    Abstract/FREE Full Text
  46. 46.↵
    1. Fryback DG,
    2. Thornbury JR
    . The efficacy of diagnostic imaging. Med Decis Making 1991;11:88–94 doi:10.1177/0272989X9101100203 pmid:1907710
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Vellinga MM,
    2. Oude Engberink RD,
    3. Seewann A, et al
    . Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain 2008;131:800–07 doi:10.1093/brain/awn009 pmid:18245785
    Abstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 38 (7)
American Journal of Neuroradiology
Vol. 38, Issue 7
1 Jul 2017
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Use of Noncontrast Quantitative MRI to Detect Gadolinium-Enhancing Multiple Sclerosis Brain Lesions: A Systematic Review and Meta-Analysis
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
A. Gupta, K. Al-Dasuqi, F. Xia, G. Askin, Y. Zhao, D. Delgado, Y. Wang
The Use of Noncontrast Quantitative MRI to Detect Gadolinium-Enhancing Multiple Sclerosis Brain Lesions: A Systematic Review and Meta-Analysis
American Journal of Neuroradiology Jul 2017, 38 (7) 1317-1322; DOI: 10.3174/ajnr.A5209

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
The Use of Noncontrast Quantitative MRI to Detect Gadolinium-Enhancing Multiple Sclerosis Brain Lesions: A Systematic Review and Meta-Analysis
A. Gupta, K. Al-Dasuqi, F. Xia, G. Askin, Y. Zhao, D. Delgado, Y. Wang
American Journal of Neuroradiology Jul 2017, 38 (7) 1317-1322; DOI: 10.3174/ajnr.A5209
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • CALGARY NORMATIVE STUDY: STUDY DESIGN OF A PROSPECTIVE LONGITUDINAL STUDY TO CHARACTERIZE POTENTIAL QUANTITATIVE MR BIOMARKERS OVER THE ADULT LIFESPAN
  • Calgary Normative Study: design of a prospective longitudinal study to characterise potential quantitative MR biomarkers of neurodegeneration over the adult lifespan
  • Minimal evidence of disease activity (MEDA) in relapsing-remitting multiple sclerosis
  • Gadolinium-Enhanced Susceptibility-Weighted Imaging in Multiple Sclerosis: Optimizing the Recognition of Active Plaques for Different MR Imaging Sequences
  • Do All Patients with Multiple Sclerosis Benefit from the Use of Contrast on Serial Follow-Up MR Imaging? A Retrospective Analysis
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Segmentation of Brain Metastases with BLAST
  • Cerebral ADC Changes in Fabry Disease
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire