Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleADULT BRAIN
Open Access

Retention of Gadolinium-Based Contrast Agents in Multiple Sclerosis: Retrospective Analysis of an 18-Year Longitudinal Study

Y. Forslin, S. Shams, F. Hashim, P. Aspelin, G. Bergendal, J. Martola, S. Fredrikson, M. Kristoffersen-Wiberg and T. Granberg
American Journal of Neuroradiology July 2017, 38 (7) 1311-1316; DOI: https://doi.org/10.3174/ajnr.A5211
Y. Forslin
aFrom the Departments of Clinical Science Intervention and Technology (Y.F., S.S., F.H., P.A., G.B., J.M., M.K.-W., T.G.)
bRadiology (Y.F., S.S., F.H., P.A., G.B., J.M., M.K.-W., T.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Forslin
S. Shams
aFrom the Departments of Clinical Science Intervention and Technology (Y.F., S.S., F.H., P.A., G.B., J.M., M.K.-W., T.G.)
bRadiology (Y.F., S.S., F.H., P.A., G.B., J.M., M.K.-W., T.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Shams
F. Hashim
aFrom the Departments of Clinical Science Intervention and Technology (Y.F., S.S., F.H., P.A., G.B., J.M., M.K.-W., T.G.)
bRadiology (Y.F., S.S., F.H., P.A., G.B., J.M., M.K.-W., T.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F. Hashim
P. Aspelin
aFrom the Departments of Clinical Science Intervention and Technology (Y.F., S.S., F.H., P.A., G.B., J.M., M.K.-W., T.G.)
bRadiology (Y.F., S.S., F.H., P.A., G.B., J.M., M.K.-W., T.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P. Aspelin
G. Bergendal
aFrom the Departments of Clinical Science Intervention and Technology (Y.F., S.S., F.H., P.A., G.B., J.M., M.K.-W., T.G.)
bRadiology (Y.F., S.S., F.H., P.A., G.B., J.M., M.K.-W., T.G.)
cNeurology (G.B., S.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Bergendal
J. Martola
aFrom the Departments of Clinical Science Intervention and Technology (Y.F., S.S., F.H., P.A., G.B., J.M., M.K.-W., T.G.)
bRadiology (Y.F., S.S., F.H., P.A., G.B., J.M., M.K.-W., T.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Martola
S. Fredrikson
cNeurology (G.B., S.F.)
dClinical Neuroscience (S.F.), Karolinska Institutet, Stockholm, Sweden.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Fredrikson
M. Kristoffersen-Wiberg
aFrom the Departments of Clinical Science Intervention and Technology (Y.F., S.S., F.H., P.A., G.B., J.M., M.K.-W., T.G.)
bRadiology (Y.F., S.S., F.H., P.A., G.B., J.M., M.K.-W., T.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Kristoffersen-Wiberg
T. Granberg
aFrom the Departments of Clinical Science Intervention and Technology (Y.F., S.S., F.H., P.A., G.B., J.M., M.K.-W., T.G.)
bRadiology (Y.F., S.S., F.H., P.A., G.B., J.M., M.K.-W., T.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Granberg
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Lohrke J,
    2. Frenzel T,
    3. Endrikat J, et al
    . 25 years of contrast-enhanced MRI: developments, current challenges and future perspectives. Adv Ther 2016;33:1–28 doi:10.1007/s12325-015-0275-4 pmid:26809251
    CrossRefPubMed
  2. 2.↵
    1. Idée JM,
    2. Fretellier N,
    3. Robic C, et al
    . The role of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: a critical update. Crit Rev Toxicol 2014;44:895–913 doi:10.3109/10408444.2014.955568 pmid:25257840
    CrossRefPubMed
  3. 3.↵
    1. Frenzel T,
    2. Lengsfeld P,
    3. Schirmer H, et al
    . Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Invest Radiol 2008;43:817–28 doi:10.1097/RLI.0b013e3181852171 pmid:19002053
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Thomsen HS,
    2. Morcos SK,
    3. Almén T, et al
    ; ESUR Contrast Medium Safety Committee. Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol 2013;23:307–18 doi:10.1007/s00330-012-2597-9 pmid:22865271
    CrossRefPubMed
  5. 5.↵
    1. White GW,
    2. Gibby WA,
    3. Tweedle MF
    . Comparison of Gd(DTPA-BMA) (Omniscan) versus Gd(HP-DO3A) (ProHance) relative to gadolinium retention in human bone tissue by inductively coupled plasma mass spectroscopy. Invest Radiol 2006;41:272–78 doi:10.1097/01.rli.0000186569.32408.95 pmid:16481910
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Idée JM,
    2. Port M,
    3. Dencausse A, et al
    . Involvement of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: an update. Radiol Clin North Am 2009;47:855–69, vii doi:10.1016/j.rcl.2009.06.006 pmid:19744600
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Roberts DR,
    2. Lindhorst SM,
    3. Welsh CT, et al
    . High levels of gadolinium deposition in the skin of a patient with normal renal function. Invest Radiol 2016;51:280–89 doi:10.1097/RLI.0000000000000266 pmid:26953564
    CrossRefPubMed
  8. 8.↵
    1. Kanda T,
    2. Ishii K,
    3. Kawaguchi H, et al
    . High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 2014;270:834–41 doi:10.1148/radiol.13131669 pmid:24475844
    CrossRefPubMed
  9. 9.↵
    1. Errante Y,
    2. Cirimele V,
    3. Mallio CA, et al
    . Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation. Invest Radiol 2014;49:685–90 doi:10.1097/RLI.0000000000000072 pmid:24872007
    CrossRefPubMed
  10. 10.↵
    1. McDonald RJ,
    2. McDonald JS,
    3. Kallmes DF, et al
    . Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 2015;275:772–82 doi:10.1148/radiol.15150025 pmid:25742194
    CrossRefPubMed
  11. 11.↵
    1. Quattrocchi CC,
    2. Mallio CA,
    3. Errante Y, et al
    . Gadodiamide and dentate nucleus T1 hyperintensity in patients with meningioma evaluated by multiple follow-up contrast-enhanced magnetic resonance examinations with no systemic interval therapy. Invest Radiol 2015;50:470–72 doi:10.1097/RLI.0000000000000154 pmid:25756685
    CrossRefPubMed
  12. 12.↵
    1. Kanda T,
    2. Fukusato T,
    3. Matsuda M, et al
    . Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 2015;276:228–32 doi:10.1148/radiol.2015142690 pmid:25942417
    CrossRefPubMed
  13. 13.↵
    1. Murata N,
    2. Gonzalez-Cuyar LF,
    3. Murata K, et al
    . Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Invest Radiol 2016;51:447–53 doi:10.1097/RLI.0000000000000252 pmid:26863577
    CrossRefPubMed
  14. 14.↵
    1. Robert P,
    2. Lehericy S,
    3. Grand S, et al
    . T1-weighted hypersignal in the deep cerebellar nuclei after repeated administrations of gadolinium-based contrast agents in healthy rats: difference between linear and macrocyclic agents. Invest Radiol 2015;50:473–80 doi:10.1097/RLI.0000000000000181 pmid:26107651
    CrossRefPubMed
  15. 15.↵
    1. Goischke HK
    . MRI with gadolinium-based contrast agents: practical help to ensure patient safety. J Am Coll Radiol 2016;13:890 doi:10.1016/j.jacr.2016.05.007 pmid:27325471
    CrossRefPubMed
  16. 16.↵
    1. Welk B,
    2. McArthur E,
    3. Morrow SA, et al
    . Association between gadolinium contrast exposure and the risk of parkinsonism. JAMA 2016;316:96–98 doi:10.1001/jama.2016.8096 pmid:27380348
    CrossRefPubMed
  17. 17.↵
    1. Poser CM,
    2. Paty DW,
    3. Scheinberg L, et al
    . New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 1983;13:227–31 doi:10.1002/ana.410130302 pmid:6847134
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Reuter M,
    2. Schmansky NJ,
    3. Rosas HD, et al
    . Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 2012;61:1402–18 doi:10.1016/j.neuroimage.2012.02.084 pmid:22430496
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Schmidt P,
    2. Gaser C,
    3. Arsic M, et al
    . An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. Neuroimage 2012;59:3774–83 doi:10.1016/j.neuroimage.2011.11.032 pmid:22119648
    CrossRefPubMed
  20. 20.↵
    1. Kurtzke JF
    . Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983;33:1444–52 doi:10.1212/WNL.33.11.1444 pmid:6685237
    Abstract/FREE Full Text
  21. 21.↵
    1. Lezak MD
    , ed. Neuropsychological Assessment. 5th ed. Oxford: Oxford University Press; 2012
  22. 22.↵
    1. Benjamini Y,
    2. Krieger AM,
    3. Yekutieli D
    . Adaptive linear step-up procedures that control the false discovery rate. Biometrika 2006;93:491–507 doi:10.1093/biomet/93.3.491
    Abstract/FREE Full Text
  23. 23.↵
    1. Radbruch A,
    2. Weberling LD,
    3. Kieslich PJ, et al
    . Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 2015;275:783–91 doi:10.1148/radiol.2015150337 pmid:25848905
    CrossRefPubMed
  24. 24.↵
    1. Stojanov DA,
    2. Aracki-Trenkic A,
    3. Vojinovic S, et al
    . Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol. Eur Radiol 2016;26:807–15 doi:10.1007/s00330-015-3879-9 pmid:26105022
    CrossRefPubMed
  25. 25.↵
    1. Kanda T,
    2. Osawa M,
    3. Oba H, et al
    . High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 2015;275:803–09 doi:10.1148/radiol.14140364 pmid:25633504
    CrossRefPubMed
  26. 26.↵
    1. Thomsen HS
    . T1 hyperintensity in the brain after multiple intravenous injections of gadolinium-based contrast agents. Acta Radiol 2016;57:389–91 doi:10.1177/0284185115626479 pmid:26792824
    CrossRefPubMed
  27. 27.↵
    1. Minagar A,
    2. Barnett MH,
    3. Benedict RH, et al
    . The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspects. Neurology 2013;80:210–19 doi:10.1212/WNL.0b013e31827b910b pmid:23296131
    Abstract/FREE Full Text
  28. 28.↵
    1. Filippi M,
    2. Rocca MA,
    3. Barkhof F, et al
    ; Attendees of the Correlation between Pathological MRI Findings in MS Workshop. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol 2012;11:349–60 doi:10.1016/S1474-4422(12)70003-0 pmid:22441196
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Roccatagliata L,
    2. Vuolo L,
    3. Bonzano L, et al
    . Multiple sclerosis: hyperintense dentate nucleus on unenhanced T1-weighted MR images is associated with the secondary progressive subtype. Radiology 2009;251:503–10 doi:10.1148/radiol.2511081269 pmid:19401576
    CrossRefPubMed
  30. 30.↵
    1. Ramalho J,
    2. Ramalho M,
    3. AlObaidy M, et al
    . T1 signal-intensity increase in the dentate nucleus after multiple exposures to gadodiamide: intraindividual comparison between 2 commonly used sequences. AJNR Am J Neuroradiol 2016;37:1427–31 doi:10.3174/ajnr.A4757 pmid:27032972
    Abstract/FREE Full Text
  31. 31.↵
    1. Ramalho J,
    2. Ramalho M,
    3. AlObaidy M, et al
    . Technical aspects of MRI signal change quantification after gadolinium-based contrast agents' administration. Magn Reson Imaging 2016;34:1355–58 doi:10.1016/j.mri.2016.09.004 pmid:27693606
    CrossRefPubMed
  32. 32.↵
    1. Rocca MA,
    2. Amato MP,
    3. Enzinger C, et al
    ; MAGNIMS Study Group. Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol 2015;14:302–17 doi:10.1016/S1474-4422(14)70250-9 pmid:25662900
    CrossRefPubMed
  33. 33.↵
    1. Tröster AI,
    2. Woods SP,
    3. Fields JA
    . Verbal fluency declines after pallidotomy: an interaction between task and lesion laterality. Appl Neuropsychol 2003;10:69–75 doi:10.1207/S15324826AN1002_02 pmid:12788681
    CrossRefPubMed
  34. 34.↵
    1. Mariën P,
    2. Ackermann H,
    3. Adamaszek M, et al
    . Consensus paper: language and the cerebellum—an ongoing enigma. Cerebellum 2014;13:386–410 doi:10.1007/s12311-013-0540-5 pmid:24318484
    CrossRefPubMed
  35. 35.↵
    1. Sbardella E,
    2. Upadhyay N,
    3. Tona F, et al
    . Dentate nucleus connectivity in adult patients with multiple sclerosis: functional changes at rest and correlation with clinical features. Mult Scler 2017;23:546–55 doi:10.1177/1352458516657438 pmid:27411700
    CrossRefPubMed
  36. 36.↵
    1. Filippi M,
    2. Rocca MA,
    3. De Stefano N, et al
    . Magnetic resonance techniques in multiple sclerosis: the present and the future. Arch Neurol 2011;68:1514–20 doi:10.1001/archneurol.2011.914 pmid:22159052
    CrossRefPubMed
  37. 37.↵
    1. Sandroff BM,
    2. Schwartz CE,
    3. DeLuca J
    . Measurement and maintenance of reserve in multiple sclerosis. J Neurol 2016;263:2158–69 doi:10.1007/s00415-016-8104-05 pmid:27072141
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 38 (7)
American Journal of Neuroradiology
Vol. 38, Issue 7
1 Jul 2017
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Retention of Gadolinium-Based Contrast Agents in Multiple Sclerosis: Retrospective Analysis of an 18-Year Longitudinal Study
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Y. Forslin, S. Shams, F. Hashim, P. Aspelin, G. Bergendal, J. Martola, S. Fredrikson, M. Kristoffersen-Wiberg, T. Granberg
Retention of Gadolinium-Based Contrast Agents in Multiple Sclerosis: Retrospective Analysis of an 18-Year Longitudinal Study
American Journal of Neuroradiology Jul 2017, 38 (7) 1311-1316; DOI: 10.3174/ajnr.A5211

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Retention of Gadolinium-Based Contrast Agents in Multiple Sclerosis: Retrospective Analysis of an 18-Year Longitudinal Study
Y. Forslin, S. Shams, F. Hashim, P. Aspelin, G. Bergendal, J. Martola, S. Fredrikson, M. Kristoffersen-Wiberg, T. Granberg
American Journal of Neuroradiology Jul 2017, 38 (7) 1311-1316; DOI: 10.3174/ajnr.A5211
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • MR Imaging Signs of Gadolinium Retention Are Not Associated with Long-Term Motor and Cognitive Outcomes in Multiple Sclerosis
  • Does Gadolinium Deposition Lead to Metabolite Alteration in the Dentate Nucleus? An MRS Study in Patients with MS
  • Safety of Gadolinium-Based Contrast Agents in Patients with Stage 4 and 5 Chronic Kidney Disease: a Radiologists Perspective
  • Cumulative gadodiamide administration leads to brain gadolinium deposition in early MS
  • Signal Hyperintensity on Unenhanced T1-Weighted Brain and Cervical Spinal Cord MR Images after Multiple Doses of Linear Gadolinium-Based Contrast Agent
  • Gadolinium Retention in the Brain: An MRI Relaxometry Study of Linear and Macrocyclic Gadolinium-Based Contrast Agents in Multiple Sclerosis
  • Crossref (48)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Gadolinium Retention: A Research Roadmap from the 2018 NIH/ACR/RSNA Workshop on Gadolinium Chelates
    Robert J. McDonald, Deborah Levine, Jeffrey Weinreb, Emanuel Kanal, Matthew S. Davenport, James H. Ellis, Paula M. Jacobs, Robert E. Lenkinski, Kenneth R. Maravilla, Martin R. Prince, Howard A. Rowley, Michael F. Tweedle, Herbert Y. Kressel
    Radiology 2018 289 2
  • Gadolinium-based Contrast Media, Cerebrospinal Fluid and the Glymphatic System: Possible Mechanisms for the Deposition of Gadolinium in the Brain
    Toshiaki Taoka, Shinji Naganawa
    Magnetic Resonance in Medical Sciences 2018 17 2
  • Gadolinium retention after administration of contrast agents based on linear chelators and the recommendations of the European Medicines Agency
    Ilona A. Dekkers, Rick Roos, Aart J. van der Molen
    European Radiology 2018 28 4
  • Gadolinium-Based MRI Contrast Agents Induce Mitochondrial Toxicity and Cell Death in Human Neurons, and Toxicity Increases With Reduced Kinetic Stability of the Agent
    Danielle V. Bower, Johannes K. Richter, Hendrik von Tengg-Kobligk, Johannes T. Heverhagen, Val M. Runge
    Investigative Radiology 2019 54 8
  • Gadolinium: pharmacokinetics and toxicity in humans and laboratory animals following contrast agent administration
    Julie Davies, Petra Siebenhandl-Wolff, Francois Tranquart, Paul Jones, Paul Evans
    Archives of Toxicology 2022 96 2
  • Gadolinium-based contrast agents — review of recent literature on magnetic resonance imaging signal intensity changes and tissue deposits, with emphasis on pediatric patients
    Einat Blumfield, David W. Swenson, Ramesh S. Iyer, A. Luana Stanescu
    Pediatric Radiology 2019 49 4
  • Gadolinium-based contrast agents in children
    Michael N. Rozenfeld, Daniel J. Podberesky
    Pediatric Radiology 2018 48 9
  • Exposure to gadolinium and neurotoxicity: current status of preclinical and clinical studies
    Carlo A. Mallio, Àlex Rovira, Paul M. Parizel, Carlo C. Quattrocchi
    Neuroradiology 2020 62 8
  • A Review of the Current Evidence on Gadolinium Deposition in the Brain
    Richard Pullicino, Mark Radon, Shubhabrata Biswas, Maneesh Bhojak, Kumar Das
    Clinical Neuroradiology 2018 28 2
  • Current and Future MR Contrast Agents
    Eric Lancelot, Jean-Sébastien Raynaud, Pierre Desché
    Investigative Radiology 2020 55 9

More in this TOC Section

ADULT BRAIN

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Cerebral ADC Changes in Fabry Disease
  • ML for Glioma Molecular Subtype Prediction
Show more ADULT BRAIN

PATIENT SAFETY

  • Safety of Intrathecal Gadobutrol in Various Doses
  • Impact of Kidney Function on CNS Gadolinium Deposition in Patients Receiving Repeated Doses of Gadobutrol
  • Contrast-Induced Acute Kidney Injury in Radiologic Management of Acute Ischemic Stroke in the Emergency Setting
Show more PATIENT SAFETY

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire