Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleReview Articles
Open Access

Metabolic Imaging of Ischemic Stroke: The Present and Future

K.A. Dani and S. Warach
American Journal of Neuroradiology June 2014, 35 (6 suppl) S37-S43; DOI: https://doi.org/10.3174/ajnr.A3789
K.A. Dani
aFrom the Institute of Neurosciences and Psychology (K.A.D.), University of Glasgow, Institute of Neurological Sciences, Glasgow, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Warach
bDepartment of Neurology and Neurotherapeutics (S.W.), UT Southwestern, Dallas, Texas.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Astrup J,
    2. Siesjo BK,
    3. Symon L
    . Thresholds in cerebral ischemia: the ischemic penumbra. Stroke 1981;12:723–5
    FREE Full Text
  2. 2.↵
    1. Furlan M,
    2. Marchal G,
    3. Viader F,
    4. et al
    . Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra. Ann Neurol 1996;40:216–26
    CrossRefPubMedWeb of Science
  3. 3.↵
    National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995;333:1581–7
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Heiss WD,
    2. Huber M,
    3. Fink GR,
    4. et al
    . Progressive derangement of periinfarct viable tissue in ischemic stroke. J Cereb Blood Flow Metab 1992;12:193–203
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Marchal G,
    2. Beaudouin V,
    3. Rioux P,
    4. et al
    . Prolonged persistence of substantial volumes of potentially viable brain tissue after stroke: a correlative PET-CT study with voxel-based data analysis. Stroke 1996;27:599–606
    Abstract/FREE Full Text
  6. 6.↵
    1. Marchal G,
    2. Serrati C,
    3. Rioux P,
    4. et al
    . PET imaging of cerebral perfusion and oxygen consumption in acute ischaemic stroke: relation to outcome. Lancet 1993;341:925–7
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Heiss WD,
    2. Kracht L,
    3. Grond M,
    4. et al
    . Early [(11)C]Flumazenil/H(2)O positron emission tomography predicts irreversible ischemic cortical damage in stroke patients receiving acute thrombolytic therapy. Stroke 2000;31:366–9
    Abstract/FREE Full Text
  8. 8.↵
    1. Read SJ,
    2. Hirano T,
    3. Abbott DF,
    4. et al
    . Identifying hypoxic tissue after acute ischemic stroke using PET and 18F-fluoromisonidazole. Neurology 1998;51:1617–21
    CrossRef
  9. 9.↵
    1. Rojas S,
    2. Martin A,
    3. Pareto D,
    4. et al
    . Positron emission tomography with C-11-flumazenil in the rat shows preservation of binding sites during the acute phase after 2h-transient focal ischemia. Neuroscience 2011;182:208–16
    CrossRefPubMed
  10. 10.↵
    1. Spratt NJ,
    2. Donnan GA,
    3. McLeod DD,
    4. et al
    . ‘Salvaged’ stroke ischaemic penumbra shows significant injury: studies with the hypoxia tracer FMISO. J Cereb Blood Flow Metab 2011;31:934–43
    CrossRefPubMed
  11. 11.↵
    1. Grond M,
    2. Von Kummer R,
    3. Sobesky J,
    4. et al
    . Early x-ray hypoattenuation of brain parenchyma indicates extended critical hypoperfusion in acute stroke. Stroke 2000;31:133–9
    Abstract/FREE Full Text
  12. 12.↵
    1. Muir KW,
    2. Baird-Gunning J,
    3. Walker L,
    4. et al
    . Can the ischemic penumbra be identified on noncontrast CT of acute stroke? Stroke 2007;38:2485–90
    Abstract/FREE Full Text
  13. 13.↵
    1. Chalela JA,
    2. Kidwell CS,
    3. Nentwich LM,
    4. et al
    . Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet 2007;369:293–98
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Guadagno JV,
    2. Warburton EA,
    3. Jones PS,
    4. et al
    . How affected is oxygen metabolism in DWI lesions? A combined acute stroke PET-MR study. Neurology 2006;67:824–9
    CrossRef
  15. 15.↵
    1. Kidwell CS,
    2. Saver JL,
    3. Mattiello J,
    4. et al
    . Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol 2000;47:462–9
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Freeman JW,
    2. Luby M,
    3. Merino JG,
    4. et al
    . Negative diffusion-weighted imaging after intravenous tissue-type plasminogen activator is rare and unlikely to indicate averted infarction. Stroke 2013;44:1629–34
    Abstract/FREE Full Text
  17. 17.↵
    1. Thomalla G,
    2. Rossbach P,
    3. Rosenkranz M,
    4. et al
    . Negative fluid-attenuated inversion recovery imaging identifies acute ischemic stroke at 3 hours or less. Ann Neurol 2009;65:724–32
    CrossRefPubMed
  18. 18.↵
    1. Thomalla G,
    2. Ebinger M,
    3. Fiehler J,
    4. et al
    . EU-funded treatment study: WAKE-UP: a randomized, placebo-controlled MRI-based trial of thrombolysis in wake-up stroke. Nervenarzt 2012;83:1241–51
    CrossRefPubMed
  19. 19.↵
    1. Schlaug G,
    2. Benfield A,
    3. Baird AE,
    4. et al
    . The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology 1999;53:1528–37
    CrossRef
  20. 20.↵
    1. Dani KA,
    2. Thomas RGR,
    3. Chappell FM,
    4. et al
    . Systematic review of perfusion imaging with computed tomography and magnetic resonance in acute ischemic stroke: heterogeneity of acquisition and postprocessing parameters a translational medicine research collaboration multicentre acute stroke imaging study. Stroke 2012;43:563–66
    Abstract/FREE Full Text
  21. 21.↵
    1. Dani KA,
    2. Thomas RGR,
    3. Chappell FM,
    4. et al
    . Computed tomography and magnetic resonance perfusion imaging in ischemic stroke: definitions and thresholds. Ann Neurol 2011;70:384–401
    CrossRefPubMed
  22. 22.↵
    1. Olivot JM,
    2. Mlynash M,
    3. Thijs VN,
    4. et al
    . Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke 2009;40:469–75
    Abstract/FREE Full Text
  23. 23.↵
    1. Wintermark M,
    2. Flanders AE,
    3. Velthuis B,
    4. et al
    . Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke 2006;37:979–85
    Abstract/FREE Full Text
  24. 24.↵
    1. Gideon P,
    2. Henriksen O,
    3. Sperling B,
    4. et al
    . Early time course of N-acetylaspartate, creatine and phosphocreatine, and compounds containing choline in the brain after acute stroke: a proton magnetic resonance spectroscopy study. Stroke 1992;23:1566–72
    Abstract/FREE Full Text
  25. 25.↵
    1. Saunders DE,
    2. Howe FA,
    3. van den Boogaart A,
    4. et al
    . Continuing ischemic damage after acute middle cerebral artery infarction in humans demonstrated by short-echo proton spectroscopy. Stroke 1995;26:1007–13
    Abstract/FREE Full Text
  26. 26.↵
    1. Munoz Maniega S,
    2. Cvoro V,
    3. Chappell FM,
    4. et al
    . Changes in NAA and lactate following ischemic stroke: a serial MR spectroscopic imaging study. Neurology 2008;71:1993–99
    CrossRef
  27. 27.↵
    1. Singhal AB,
    2. Ratai E,
    3. Benner T,
    4. et al
    . Magnetic resonance spectroscopy study of oxygen therapy in ischemic stroke. Stroke 2007;38:2851–4
    Abstract/FREE Full Text
  28. 28.↵
    1. Dani KA,
    2. An L,
    3. Henning EC,
    4. et al
    . Multivoxel MR spectroscopy in acute ischemic stroke comparison to the stroke protocol MRI. Stroke 2012;43:2962–67
    Abstract/FREE Full Text
  29. 29.↵
    1. Holmes WM,
    2. Lopez-Gonzalez MR,
    3. Gallagher L,
    4. et al
    . Novel MRI detection of the ischemic penumbra: direct assessment of metabolic integrity. NMR Biomed 2012;25:295–304
    CrossRefPubMed
  30. 30.↵
    1. An L,
    2. Dani KA,
    3. Shen J,
    4. et al
    . Pilot results of in vivo brain glutathione measurements in stroke patients. J Cereb Blood Flow Metab 2012;32:2118–21
    CrossRefPubMed
  31. 31.↵
    1. Zhu X,
    2. Zhang Y,
    3. Wiesner H,
    4. et al
    . In vivo measurement of CBF using (17) O NMR signal of metabolically produced H(2) (17) O as a perfusion tracer. Magn Reson Med 2013;70:309–14
    CrossRefPubMed
  32. 32.↵
    1. Zhu X-H,
    2. Chen JM,
    3. Tu T-W,
    4. et al
    . Simultaneous and noninvasive imaging of cerebral oxygen metabolic rate, blood flow and oxygen extraction fraction in stroke mice. Neuroimage 2013;64:437–47
    CrossRefPubMed
  33. 33.↵
    1. Atkinson IC,
    2. Sonstegaard R,
    3. Pliskin NH,
    4. et al
    . Vital signs and cognitive function are not affected by 23-sodium and 17-oxygen magnetic resonance imaging of the human brain at 9.4 T. J Magn Reson Imaging 2010;32:82–87
    CrossRefPubMed
  34. 34.↵
    1. Atkinson IC,
    2. Thulborn KR
    . Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T. Neuroimage 2010;51:723–33
    CrossRefPubMed
  35. 35.↵
    1. Thulborn KR,
    2. Gindin TS,
    3. Davis D,
    4. et al
    . Comprehensive MR imaging protocol for stroke management: tissue sodium concentration as a measure of tissue viability in nonhuman primate studies and in clinical studies. Radiology 1999;213:156–66
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Wetterling F,
    2. Ansar S,
    3. Handwerker E
    . Sodium-23 magnetic resonance imaging during and after transient cerebral ischemia: multinuclear stroke protocols for double-tuned Na-23/H-1 resonator systems. Physics Med Biol 2012;57:6929–46
    CrossRefPubMed
  37. 37.↵
    1. Heiler PM,
    2. Langhauser FL,
    3. Wetterling F,
    4. et al
    . Chemical shift sodium imaging in a mouse model of thromboembolic stroke at 9.4 T. J Magn Reson Imaging 2011;34:935–40
    CrossRefPubMed
  38. 38.↵
    1. Hussain MS,
    2. Stobbe RW,
    3. Bhagat YA,
    4. et al
    . Sodium imaging intensity increases with time after human ischemic stroke. Ann Neurol 2009;66:55–62
    CrossRefPubMed
  39. 39.↵
    1. Tsang A,
    2. Stobbe RW,
    3. Asdaghi N,
    4. et al
    . Relationship between sodium intensity and perfusion deficits in acute ischemic stroke. J Magn Reson Imaging 2011;33:41–47
    CrossRefPubMed
  40. 40.↵
    1. Morita N,
    2. Harada M,
    3. Uno M,
    4. et al
    . Ischemic findings of T2*-weighted 3-Tesla MRI in acute stroke patients. Cerebrovasc Dis 2008;26:367–75
    CrossRefPubMed
  41. 41.↵
    1. Tamura H,
    2. Hatazawa J,
    3. Toyoshima H,
    4. et al
    . Detection of deoxygenation-related signal change in acute ischemic stroke patients by T2*-weighted magnetic resonance imaging. Stroke 2002;33:967–71
    Abstract/FREE Full Text
  42. 42.↵
    1. Wardlaw JM,
    2. von Heijne A
    . Increased oxygen extraction demonstrated on gradient echo (T2*) imaging in a patient with acute ischaemic stroke. Cerebrovasc Dis 2006;22:456–58
    CrossRefPubMed
  43. 43.↵
    1. Geisler BS,
    2. Brandhoff F,
    3. Fiehler J,
    4. et al
    . Blood-oxygen-level-dependent MRI allows metabolic description of tissue at risk in acute stroke patients. Stroke 2006;37:1778–84
    Abstract/FREE Full Text
  44. 44.↵
    1. Donswijk ML,
    2. Jones PS,
    3. Guadagno JV,
    4. et al
    . T2*-weighted MRI versus oxygen extraction fraction PET in acute stroke. Cerebrovasc Dis 2009;28:306–13
    CrossRefPubMed
  45. 45.↵
    1. Santosh C,
    2. Brennan D,
    3. McCabe C,
    4. et al
    . Potential use of oxygen as a metabolic biosensor in combination with T2*-weighted MRI to define the ischemic penumbra. J Cereb Blood Flow Metab 2008;28:1742–53
    CrossRefPubMed
  46. 46.↵
    1. Robertson CA,
    2. McCabe C,
    3. Gallagher L,
    4. et al
    . Stroke penumbra defined by an MRI-based oxygen challenge technique, 1: validation using [(14)C]2-deoxyglucose autoradiography. J Cereb Blood Flow Metab 2011;31:1778–87
    CrossRefPubMed
  47. 47.↵
    1. Robertson CA,
    2. McCabe C,
    3. Gallagher L,
    4. et al
    . Stroke penumbra defined by an MRI-based oxygen challenge technique, 2: validation based on the consequences of reperfusion. J Cereb Blood Flow Metab 2011;31:1788–98
    CrossRefPubMed
  48. 48.↵
    1. Shen Q,
    2. Huang S,
    3. Du F,
    4. et al
    . Probing ischemic tissue fate with BOLD fMRI of brief oxygen challenge. Brain Res 2011;1425:132–41
    CrossRefPubMed
  49. 49.↵
    1. Dani KA,
    2. Santosh C,
    3. Brennan D,
    4. et al
    . T2*-weighted magnetic resonance imaging with hyperoxia in acute ischemic stroke. Ann Neurol 2010;68:37–47
    CrossRefPubMed
  50. 50.↵
    1. Yablonskiy DA,
    2. Haacke EM
    . Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 1994;32:749–63
    CrossRefPubMedWeb of Science
  51. 51.↵
    1. An H,
    2. Lin W
    . Quantitative measurements of cerebral blood oxygen saturation using magnetic resonance imaging. J Cereb Blood Flow Metab 2000;20:1225–36
    PubMedWeb of Science
  52. 52.↵
    1. Lee JM,
    2. Vo KD,
    3. An H,
    4. et al
    . Magnetic resonance cerebral metabolic rate of oxygen utilization in hyperacute stroke patients. Ann Neurol 2003;53:227–32
    CrossRefPubMedWeb of Science
  53. 53.↵
    1. Lin W,
    2. An H,
    3. Ford AL,
    4. et al
    . MR imaging of oxygen extraction and neurovascular coupling. Stroke 2013;44:S61–64
    FREE Full Text
  54. 54.↵
    1. Ward KM,
    2. Aletras AH,
    3. Balaban RS
    . A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 2000;143:79–87
    CrossRefPubMedWeb of Science
  55. 55.↵
    1. Zhou JY,
    2. Payen JF,
    3. Wilson DA,
    4. et al
    . Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 2003;9:1085–90
    CrossRefPubMedWeb of Science
  56. 56.↵
    1. Sun PZ,
    2. Cheung JS,
    3. Wang E,
    4. et al
    . Association between pH-weighted endogenous amide proton chemical exchange saturation transfer MRI and tissue lactic acidosis during acute ischemic stroke. J Cereb Blood Flow Metab 2011;31:1743–50
    CrossRefPubMed
  57. 57.↵
    1. Sun PZ,
    2. Zhou J,
    3. Sun W,
    4. et al
    . Detection of the ischemic penumbra using pH-weighted MRI. J Cereb Blood Flow Metab 2007;27:1129–36
    CrossRefPubMed
  58. 58.↵
    1. Jokivarsi KT,
    2. Hiltunen Y,
    3. Tuunanen PI,
    4. et al
    . Correlating tissue outcome with quantitative multiparametric MRI of acute cerebral ischemia in rats. J Cereb Blood Flow Metab 2010;30:415–27
    CrossRefPubMed
  59. 59.↵
    1. Zhao X,
    2. Wen Z,
    3. Huang F,
    4. et al
    . Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magn Reson Med 2011;66:1033–41
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology
Vol. 35, Issue 6 suppl
1 Jun 2014
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Metabolic Imaging of Ischemic Stroke: The Present and Future
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
K.A. Dani, S. Warach
Metabolic Imaging of Ischemic Stroke: The Present and Future
American Journal of Neuroradiology Jun 2014, 35 (6 suppl) S37-S43; DOI: 10.3174/ajnr.A3789

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Metabolic Imaging of Ischemic Stroke: The Present and Future
K.A. Dani, S. Warach
American Journal of Neuroradiology Jun 2014, 35 (6 suppl) S37-S43; DOI: 10.3174/ajnr.A3789
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Sodium MR Neuroimaging
  • Crossref (36)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Mini Review: Circular RNAs as Potential Clinical Biomarkers for Disorders in the Central Nervous System
    Dan Lu, An-Ding Xu
    Frontiers in Genetics 2016 7
  • Imaging the physiological evolution of the ischemic penumbra in acute ischemic stroke
    Richard Leigh, Linda Knutsson, Jinyuan Zhou, Peter CM van Zijl
    Journal of Cerebral Blood Flow & Metabolism 2018 38 9
  • Quantitative sodium MR imaging: A review of its evolving role in medicine
    Keith R. Thulborn
    NeuroImage 2018 168
  • Aerobic Training and Mobilization Early Post-stroke: Cautions and Considerations
    Susan Marzolini, Andrew D. Robertson, Paul Oh, Jack M. Goodman, Dale Corbett, Xiaowei Du, Bradley J. MacIntosh
    Frontiers in Neurology 2019 10
  • Hyperpolarized 13C MRI: A novel approach for probing cerebral metabolism in health and neurological disease
    James T Grist, Jack J Miller, Fulvio Zaccagna, Mary A McLean, Frank Riemer, Tomasz Matys, Damian J Tyler, Christoffer Laustsen, Alasdair J Coles, Ferdia A Gallagher
    Journal of Cerebral Blood Flow & Metabolism 2020 40 6
  • X‐nuclei imaging: Current state, technical challenges, and future directions
    Ruomin Hu, Dennis Kleimaier, Matthias Malzacher, Michaela A.U. Hoesl, Nadia K. Paschke, Lothar R. Schad
    Journal of Magnetic Resonance Imaging 2020 51 2
  • Global cerebral ischemia due to circulatory arrest: insights into cellular pathophysiology and diagnostic modalities
    Santosh K. Sanganalmath, Purva Gopal, John R. Parker, Richard K. Downs, Joseph C. Parker, Buddhadeb Dawn
    Molecular and Cellular Biochemistry 2017 426 1-2
  • Fast high-resolution metabolic imaging of acute stroke with 3D magnetic resonance spectroscopy
    Yao Li, Tianyao Wang, Tianxiao Zhang, Zengping Lin, Yudu Li, Rong Guo, Yibo Zhao, Ziyu Meng, Jun Liu, Xin Yu, Zhi-Pei Liang, Parashkev Nachev
    Brain 2020 143 11
  • Refined Ischemic Penumbra Imaging with Tissue pH and Diffusion Kurtosis Magnetic Resonance Imaging
    Jesse Cheung, Madeline Doerr, Ranliang Hu, Phillip Zhe Sun
    Translational Stroke Research 2021 12 5
  • Spectroscopic biomarkers of motor cortex developmental plasticity in hemiparetic children after perinatal stroke
    Helen L. Carlson, Frank P. MacMaster, Ashley D. Harris, Adam Kirton
    Human Brain Mapping 2017 38 3

More in this TOC Section

  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Arteries
  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Veins
  • Clinical Translation of Hyperpolarized 13C Metabolic Probes for Glioma Imaging
Show more Review articles

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire