Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleBrain

Automated Determination of Brain Parenchymal Fraction in Multiple Sclerosis

M. Vågberg, T. Lindqvist, K. Ambarki, J.B.M. Warntjes, P. Sundström, R. Birgander and A. Svenningsson
American Journal of Neuroradiology March 2013, 34 (3) 498-504; DOI: https://doi.org/10.3174/ajnr.A3262
M. Vågberg
aFrom the Department of Pharmacology and Clinical Neuroscience, Section of Neuroscience (M.V., P.S., A.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Lindqvist
bDepartment of Radiation Sciences, Diagnostic Radiology (T.L., K.A., R.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Ambarki
bDepartment of Radiation Sciences, Diagnostic Radiology (T.L., K.A., R.B.)
cCenter for Biomedical Engineering and Physics (K.A.), Umeå University, Umeå, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.B.M. Warntjes
dCenter for Medical Imaging Science and Visualization and Division of Clinical Physiology, Department of Medicine and Health (J.B.M.W.), Linköping University, Linköping, Sweden.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Sundström
aFrom the Department of Pharmacology and Clinical Neuroscience, Section of Neuroscience (M.V., P.S., A.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Birgander
bDepartment of Radiation Sciences, Diagnostic Radiology (T.L., K.A., R.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Svenningsson
aFrom the Department of Pharmacology and Clinical Neuroscience, Section of Neuroscience (M.V., P.S., A.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Grassiot B,
    2. Desgranges B,
    3. Eustache F,
    4. et al
    . Quantification and clinical relevance of brain atrophy in multiple sclerosis: a review. J Neurol 2009;256:1397–412
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Rudick RA,
    2. Fisher E,
    3. Lee JC,
    4. et al
    . Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Multiple Sclerosis Collaborative Research Group. Neurology 1999;53:1698–704
    CrossRef
  3. 3.↵
    1. Kassubek J,
    2. Tumani H,
    3. Ecker D,
    4. et al
    . Age-related brain parenchymal fraction is significantly decreased in young multiple sclerosis patients: a quantitative MRI study. Neuroreport 2003;14:427–30
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Sharma J,
    2. Sanfilipo MP,
    3. Benedict RH,
    4. et al
    . Whole-brain atrophy in multiple sclerosis measured by automated versus semiautomated MR imaging segmentation. AJNR Am J Neuroradiol 2004;25:985–96
    Abstract/FREE Full Text
  5. 5.↵
    1. Bermel RA,
    2. Sharma J,
    3. Tjoa CW,
    4. et al
    . A semiautomated measure of whole-brain atrophy in multiple sclerosis. J Neurol Sci 2003;208:57–65
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Chard DT,
    2. Griffin CM,
    3. Parker GJ,
    4. et al
    . Brain atrophy in clinically early relapsing-remitting multiple sclerosis. Brain 2002;125:327–37
    Abstract/FREE Full Text
  7. 7.↵
    1. Bermel RA,
    2. Bakshi R
    . The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol 2006;5:158–70
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Miller DH,
    2. Barkhof F,
    3. Frank JA,
    4. et al
    . Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain 2002;125:1676–95
    Abstract/FREE Full Text
  9. 9.↵
    1. Jovicich J,
    2. Czanner S,
    3. Han X,
    4. et al
    . MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage 2009;46:177–92
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Riederer SJ,
    2. Lee JN,
    3. Farzaneh F,
    4. et al
    . Magnetic resonance image synthesis. Clinical implementation. Acta Radiol Suppl 1986;369:466–68
    PubMed
  11. 11.↵
    1. Bobman SA,
    2. Riederer SJ,
    3. Lee JN,
    4. et al
    . Cerebral magnetic resonance image synthesis. AJNR Am J Neuroradiol 1985;6:265–69
    Abstract/FREE Full Text
  12. 12.↵
    1. Redpath TW,
    2. Smith FW,
    3. Hutchison JM
    . Magnetic resonance image synthesis from an interleaved saturation recovery/inversion recovery sequence. Br J Radiol 1988;61:619–24
    Abstract/FREE Full Text
  13. 13.↵
    1. West J,
    2. Warntjes JB,
    3. Lundberg P
    . Novel whole brain segmentation and volume estimation using quantitative MRI. Eur Radiol 2012;22:998–07
    CrossRefPubMed
  14. 14.↵
    1. Alfano B,
    2. Brunetti A,
    3. Arpaia M,
    4. et al
    . Multiparametric display of spin-echo data from MR studies of brain. J Magn Reson Imaging 1995;5:217–25
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Alfano B,
    2. Brunetti A,
    3. Covelli EM,
    4. et al
    . Unsupervised, automated segmentation of the normal brain using a multispectral relaxometric magnetic resonance approach. Magn Reson Med 1997;37:84–93
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Alfano B,
    2. Brunetti A,
    3. Larobina M,
    4. et al
    . Automated segmentation and measurement of global white matter lesion volume in patients with multiple sclerosis. J Magn Reson Imaging 2000;12:799–807
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Warntjes JB,
    2. Leinhard OD,
    3. West J,
    4. et al
    . Rapid magnetic resonance quantification on the brain: optimization for clinical usage. Magn Reson Med 2008;60:320–29
    CrossRefPubMed
  18. 18.↵
    1. Ambarki K,
    2. Lindqvist T,
    3. Wåhlin A,
    4. et al
    . Evaluation of automatic measurement of the intracranial volume based on quantitative MR imaging. AJNR Am J Neuroradiol 2012;33:1951–56
    Abstract/FREE Full Text
  19. 19.↵
    1. Ambarki K,
    2. Israelsson H,
    3. Wahlin A,
    4. et al
    . Brain ventricular size in healthy elderly: comparison between Evans index and volume measurement. Neurosurgery 2010;67:94–99
    CrossRefPubMed
  20. 20.↵
    1. Ambarki K,
    2. Wahlin A,
    3. Birgander R,
    4. et al
    . MR imaging of brain volumes: evaluation of a fully automatic software. AJNR Am J Neuroradiol 2011;32:408–12
    Abstract/FREE Full Text
  21. 21.↵
    1. Polman CH,
    2. Reingold SC,
    3. Banwell B,
    4. et al
    . Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011;69:292–302
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Altman DG,
    2. Bland JM
    . Measurement in medicine: the analysis of method comparison studies. Statistician 1983;32:307–17
    CrossRefWeb of Science
  23. 23.↵
    1. Vrenken H,
    2. Geurts JJ,
    3. Knol DL,
    4. et al
    . Whole-brain T1 mapping in multiple sclerosis: global changes of normal-appearing gray and white matter. Radiology 2006;240:811–20
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Ge Y,
    2. Grossman RI,
    3. Udupa JK,
    4. et al
    . Brain atrophy in relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis: longitudinal quantitative analysis. Radiology 2000;214:665–70
    PubMedWeb of Science
  25. 25.↵
    1. Zivadinov R,
    2. Grop A,
    3. Sharma J,
    4. et al
    . Reproducibility and accuracy of quantitative magnetic resonance imaging techniques of whole-brain atrophy measurement in multiple sclerosis. J Neuroimaging 2005;15:27–36
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Horsfield MA,
    2. Rovaris M,
    3. Rocca MA,
    4. et al
    . Whole-brain atrophy in multiple sclerosis measured by two segmentation processes from various MRI sequences. J Neurol Sci 2003;216:169–77
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Smith SM,
    2. Zhang Y,
    3. Jenkinson M,
    4. et al
    . Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 2002;17:479–89
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Reed GF,
    2. Lynn F,
    3. Meade BD
    . Use of coefficient of variation in assessing variability of quantitative assays. Clin Diagn Lab Immunol 2002;9:1235–39
    CrossRefPubMed
  29. 29.↵
    1. Battaglini M,
    2. Jenkinson M,
    3. De Stefano N
    . Evaluating and reducing the impact of white matter lesions on brain volume measurements. Hum Brain Mapp 2011; 33:2062–71
    PubMed
  30. 30.↵
    1. Chard DT,
    2. Jackson JS,
    3. Miller DH,
    4. et al
    . Reducing the impact of white matter lesions on automated measures of brain gray and white matter volumes. J Magn Reson Imaging 2010;32:223–28
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 34 (3)
American Journal of Neuroradiology
Vol. 34, Issue 3
1 Mar 2013
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Automated Determination of Brain Parenchymal Fraction in Multiple Sclerosis
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
M. Vågberg, T. Lindqvist, K. Ambarki, J.B.M. Warntjes, P. Sundström, R. Birgander, A. Svenningsson
Automated Determination of Brain Parenchymal Fraction in Multiple Sclerosis
American Journal of Neuroradiology Mar 2013, 34 (3) 498-504; DOI: 10.3174/ajnr.A3262

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Automated Determination of Brain Parenchymal Fraction in Multiple Sclerosis
M. Vågberg, T. Lindqvist, K. Ambarki, J.B.M. Warntjes, P. Sundström, R. Birgander, A. Svenningsson
American Journal of Neuroradiology Mar 2013, 34 (3) 498-504; DOI: 10.3174/ajnr.A3262
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Synthetic MRI in Progressive MS: Associations with Disability
  • Aging and the Brain: A Quantitative Study of Clinical CT Images
  • Gadolinium Retention in the Brain: An MRI Relaxometry Study of Linear and Macrocyclic Gadolinium-Based Contrast Agents in Multiple Sclerosis
  • Normal Values of Magnetic Relaxation Parameters of Spine Components with the Synthetic MRI Sequence
  • Improved Precision of Automatic Brain Volume Measurements in Patients with Clinically Isolated Syndrome and Multiple Sclerosis Using Edema Correction
  • Loss of corticospinal tract integrity in early MS disease stages
  • Rituximab in multiple sclerosis: A retrospective observational study on safety and efficacy
  • Clinical Feasibility of Synthetic MRI in Multiple Sclerosis: A Diagnostic and Volumetric Validation Study
  • Quantitative MRI for Rapid and User-Independent Monitoring of Intracranial CSF Volume in Hydrocephalus
  • Quantitative MRI for Analysis of Active Multiple Sclerosis Lesions without Gadolinium-Based Contrast Agent
  • Effects of Gadolinium Contrast Agent Administration on Automatic Brain Tissue Classification of Patients with Multiple Sclerosis
  • Crossref (49)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Rituximab in multiple sclerosis
    Jonatan Salzer, Rasmus Svenningsson, Peter Alping, Lenka Novakova, Anna Björck, Katharina Fink, Protik Islam-Jakobsson, Clas Malmeström, Markus Axelsson, Mattias Vågberg, Peter Sundström, Jan Lycke, Fredrik Piehl, Anders Svenningsson
    Neurology 2016 87 20
  • SyMRI of the Brain
    Akifumi Hagiwara, Marcel Warntjes, Masaaki Hori, Christina Andica, Misaki Nakazawa, Kanako Kunishima Kumamaru, Osamu Abe, Shigeki Aoki
    Investigative Radiology 2017 52 10
  • Clinical Feasibility of Synthetic MRI in Multiple Sclerosis: A Diagnostic and Volumetric Validation Study
    T. Granberg, M. Uppman, F. Hashim, C. Cananau, L.E. Nordin, S. Shams, J. Berglund, Y. Forslin, P. Aspelin, S. Fredrikson, M. Kristoffersen-Wiberg
    American Journal of Neuroradiology 2016 37 6
  • Levels and Age Dependency of Neurofilament Light and Glial Fibrillary Acidic Protein in Healthy Individuals and Their Relation to the Brain Parenchymal Fraction
    Mattias Vågberg, Niklas Norgren, Ann Dring, Thomas Lindqvist, Richard Birgander, Henrik Zetterberg, Anders Svenningsson, Markus Reindl
    PLOS ONE 2015 10 8
  • MRI in the assessment and monitoring of multiple sclerosis: an update on best practice
    Ulrike W. Kaunzner, Susan A. Gauthier
    Therapeutic Advances in Neurological Disorders 2017 10 6
  • Neurofilament levels, disease activity and brain volume during follow-up in multiple sclerosis
    Irene Håkansson, Anders Tisell, Petra Cassel, Kaj Blennow, Henrik Zetterberg, Peter Lundberg, Charlotte Dahle, Magnus Vrethem, Jan Ernerudh
    Journal of Neuroinflammation 2018 15 1
  • Increased Concentrations of Glutamate and Glutamine in Normal-Appearing White Matter of Patients with Multiple Sclerosis and Normal MR Imaging Brain Scans
    Anders Tisell, Olof Dahlqvist Leinhard, Jan Bertus Marcel Warntjes, Anne Aalto, Örjan Smedby, Anne-Marie Landtblom, Peter Lundberg, Richard Jay Smeyne
    PLoS ONE 2013 8 4
  • Normal Appearing and Diffusely Abnormal White Matter in Patients with Multiple Sclerosis Assessed with Quantitative MR
    Janne West, Anne Aalto, Anders Tisell, Olof Dahlqvist Leinhard, Anne-Marie Landtblom, Örjan Smedby, Peter Lundberg, Pablo Villoslada
    PLoS ONE 2014 9 4
  • Quantitative MRI for Analysis of Active Multiple Sclerosis Lesions without Gadolinium-Based Contrast Agent
    I. Blystad, I. Håkansson, A. Tisell, J. Ernerudh, Ö. Smedby, P. Lundberg, E.-M. Larsson
    American Journal of Neuroradiology 2016 37 1
  • Synthetic MRI: Technologies and Applications in Neuroradiology
    Sooyeon Ji, Dongjin Yang, Jongho Lee, Seung Hong Choi, Hyeonjin Kim, Koung Mi Kang
    Journal of Magnetic Resonance Imaging 2022 55 4

More in this TOC Section

  • Fast Contrast-Enhanced 4D MRA and 4D Flow MRI Using Constrained Reconstruction (HYPRFlow): Potential Applications for Brain Arteriovenous Malformations
  • Multimodal CT Provides Improved Performance for Lacunar Infarct Detection
  • Optimal MRI Sequence for Identifying Occlusion Location in Acute Stroke: Which Value of Time-Resolved Contrast-Enhanced MRA?
Show more BRAIN

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire