Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleBrainE
Open Access

Survival Analysis of Patients with High-Grade Gliomas Based on Data Mining of Imaging Variables

E.I. Zacharaki, N. Morita, P. Bhatt, D.M. O'Rourke, E.R. Melhem and C. Davatzikos
American Journal of Neuroradiology June 2012, 33 (6) 1065-1071; DOI: https://doi.org/10.3174/ajnr.A2939
E.I. Zacharaki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N. Morita
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Bhatt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.M. O'Rourke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E.R. Melhem
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Davatzikos
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

Article Information

vol. 33 no. 6 1065-1071
DOI 
https://doi.org/10.3174/ajnr.A2939
PubMed 
22322603

Published By 
American Journal of Neuroradiology
Print ISSN 
0195-6108
Online ISSN 
1936-959X
History 
  • Received June 30, 2011
  • Accepted after revision September 26, 2011
  • Published online June 13, 2012.

Article Versions

  • Latest version (February 9, 2012 - 09:35).
  • You are viewing the most recent version of this article.
Copyright & Usage 
© 2012 by American Journal of Neuroradiology Indicates open access to non-subscribers at www.ajnr.org

Author Information

  1. E.I. Zacharakia,c,
  2. N. Moritaa,
  3. P. Bhatta,
  4. D.M. O'Rourkeb,
  5. E.R. Melhema and
  6. C. Davatzikosa
  1. aFrom the Section of Biomedical Image Analysis (E.I.Z., N.M., P.B., E.R.M., C.D.), Department of Radiology
  2. bDepartment of Neurosurgery (D.M.O.), University of Pennsylvania, Philadelphia, Pennsylvania
  3. cDepartment of Medical Physics (E.I.Z.), University of Patras, Patras, Greece
  1. Please address correspondence to Evangelia I. Zacharaki, PhD, Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, 3600 Market St, Suite 380, Philadelphia, PA 19104; e-mail: Eva.Zacharaki{at}uphs.upenn.edu, ezachar{at}upatras.gr
View Full Text

Altmetrics

Cited By...

  • 56 Citations
  • 62 Citations
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology
    E.J. Limkin, R. Sun, L. Dercle, E.I. Zacharaki, C. Robert, S. Reuzé, A. Schernberg, N. Paragios, E. Deutsch, C. Ferté
    Annals of Oncology 2017 28 6
  • Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas
    Biqi Zhang, Ken Chang, Shakti Ramkissoon, Shyam Tanguturi, Wenya Linda Bi, David A. Reardon, Keith L. Ligon, Brian M. Alexander, Patrick Y. Wen, Raymond Y. Huang
    Neuro-Oncology 2017 19 1
  • Multi-Channel 3D Deep Feature Learning for Survival Time Prediction of Brain Tumor Patients Using Multi-Modal Neuroimages
    Dong Nie, Junfeng Lu, Han Zhang, Ehsan Adeli, Jun Wang, Zhengda Yu, LuYan Liu, Qian Wang, Jinsong Wu, Dinggang Shen
    Scientific Reports 2019 9 1
  • Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016
    Dong Nie, Han Zhang, Ehsan Adeli, Luyan Liu, Dinggang Shen
    2016 9901
  • Automated glioma grading on conventional MRI images using deep convolutional neural networks
    Ying Zhuge, Holly Ning, Peter Mathen, Jason Y. Cheng, Andra V. Krauze, Kevin Camphausen, Robert W. Miller
    Medical Physics 2020 47 7
  • A Generic Support Vector Machine Model for Preoperative Glioma Survival Associations
    Kyrre E. Emblem, Marco C. Pinho, Frank G. Zöllner, Paulina Due-Tonnessen, John K. Hald, Lothar R. Schad, Torstein R. Meling, Otto Rapalino, Atle Bjornerud
    Radiology 2015 275 1
  • Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab
    Ken Chang, Biqi Zhang, Xiaotao Guo, Min Zong, Rifaquat Rahman, David Sanchez, Nicolette Winder, David A Reardon, Binsheng Zhao, Patrick Y. Wen, Raymond Y Huang
    Neuro-Oncology 2016 18 12
  • Preoperative dynamic contrast-enhanced MRI correlates with molecular markers of hypoxia and vascularity in specific areas of intratumoral microenvironment and is predictive of patient outcome
    Randy L. Jensen, Michael L. Mumert, David L. Gillespie, Anita Y. Kinney, Matthias C. Schabel, Karen L. Salzman
    Neuro-Oncology 2014 16 2
  • The role of diffusion and perfusion weighted imaging in the differential diagnosis of cerebral tumors: a review and future perspectives
    Patricia Svolos, Evanthia Kousi, Eftychia Kapsalaki, Kyriaki Theodorou, Ioannis Fezoulidis, Constantin Kappas, Ioannis Tsougos
    Cancer Imaging 2014 14 1
  • Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma
    Vasileios G. Kanas, Evangelia I. Zacharaki, Ginu A. Thomas, Pascal O. Zinn, Vasileios Megalooikonomou, Rivka R. Colen
    Computer Methods and Programs in Biomedicine 2017 140
  • A non-invasive methodology for the grade identification of astrocytoma using image processing and artificial intelligence techniques
    M. Monica Subashini, Sarat Kumar Sahoo, Venika Sunil, Sudha Easwaran
    Expert Systems with Applications 2016 43
  • Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review
    Quinlan D. Buchlak, Nazanin Esmaili, Jean-Christophe Leveque, Christine Bennett, Farrokh Farrokhi, Massimo Piccardi
    Journal of Clinical Neuroscience 2021 89
  • Fully automatic GBM segmentation in the TCGA-GBM dataset: Prognosis and correlation with VASARI features
    Emmanuel Rios Velazquez, Raphael Meier, William D. Dunn Jr, Brian Alexander, Roland Wiest, Stefan Bauer, David A. Gutman, Mauricio Reyes, Hugo J.W.L. Aerts
    Scientific Reports 2015 5 1
  • Whole-Tumor Histogram and Texture Analyses of DTI for Evaluation ofIDH1-Mutation and 1p/19q-Codeletion Status in World Health Organization Grade II Gliomas
    Y.W. Park, K. Han, S.S. Ahn, Y.S. Choi, J.H. Chang, S.H. Kim, S.-G. Kang, E.H. Kim, S.-K. Lee
    American Journal of Neuroradiology 2018 39 4
  • Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T
    Fusun Citak-Er, Zeynep Firat, Ilhami Kovanlikaya, Ugur Ture, Esin Ozturk-Isik
    Computers in Biology and Medicine 2018 99
  • A Prognostic Model Based on Preoperative MRI Predicts Overall Survival in Patients with Diffuse Gliomas
    A. Hilario, J. M. Sepulveda, A. Perez-Nunez, E. Salvador, J. M. Millan, A. Hernandez-Lain, V. Rodriguez-Gonzalez, A. Lagares, A. Ramos
    American Journal of Neuroradiology 2014 35 6
  • Quantitative texture analysis in the prediction of IDH status in low-grade gliomas
    Asgeir Store Jakola, Yi-Hua Zhang, Anne J. Skjulsvik, Ole Solheim, Hans Kristian Bø, Erik Magnus Berntsen, Ingerid Reinertsen, Sasha Gulati, Petter Förander, Torkel B. Brismar
    Clinical Neurology and Neurosurgery 2018 164
  • Multimodal imaging of gliomas in the context of evolving cellular and molecular therapies
    Olivier Keunen, Torfinn Taxt, Renate Grüner, Morten Lund-Johansen, Joerg-Christian Tonn, Tina Pavlin, Rolf Bjerkvig, Simone P. Niclou, Frits Thorsen
    Advanced Drug Delivery Reviews 2014 76
  • A quantitative study of shape descriptors from glioblastoma multiforme phenotypes for predicting survival outcome
    Ahmad Chaddad, Christian Desrosiers, Lama Hassan, Camel Tanougast
    The British Journal of Radiology 2016 89 1068
  • Overall survival time prediction for high-grade glioma patients based on large-scale brain functional networks
    Luyan Liu, Han Zhang, Jinsong Wu, Zhengda Yu, Xiaobo Chen, Islem Rekik, Qian Wang, Junfeng Lu, Dinggang Shen
    Brain Imaging and Behavior 2019 13 5
  • Survival prediction of glioblastoma patients—are we there yet? A systematic review of prognostic modeling for glioblastoma and its clinical potential
    Ishaan Ashwini Tewarie, Joeky T. Senders, Stijn Kremer, Sharmila Devi, William B. Gormley, Omar Arnaout, Timothy R. Smith, Marike L. D. Broekman
    Neurosurgical Review 2021 44 4
  • IVIM perfusion fraction is prognostic for survival in brain glioma
    Christian Federau, Milena Cerny, Marion Roux, Pascal J. Mosimann, Philippe Maeder, Reto Meuli, Max Wintermark
    Clinical Neuroradiology 2017 27 4
  • Machine learning in preoperative glioma MRI: Survival associations by perfusion‐based support vector machine outperforms traditional MRI
    Kyrre E. Emblem, Paulina Due‐Tonnessen, John K. Hald, Atle Bjornerud, Marco C. Pinho, David Scheie, Lothar R. Schad, Torstein R. Meling, Frank G. Zoellner
    Journal of Magnetic Resonance Imaging 2014 40 1
  • Clinical parameters outweigh diffusion- and perfusion-derived MRI parameters in predicting survival in newly diagnosed glioblastoma
    Sina Burth, Philipp Kickingereder, Oliver Eidel, Diana Tichy, David Bonekamp, Lukas Weberling, Antje Wick, Sarah Löw, Anne Hertenstein, Martha Nowosielski, Heinz-Peter Schlemmer, Wolfgang Wick, Martin Bendszus, Alexander Radbruch
    Neuro-Oncology 2016 18 12
  • Prediction of IDH1 Mutation Status in Glioblastoma Using Machine Learning Technique Based on Quantitative Radiomic Data
    Min Ho Lee, Junhyung Kim, Sung-Tae Kim, Hye-Mi Shin, Hye-Jin You, Jung Won Choi, Ho Jun Seol, Do-Hyun Nam, Jung-Il Lee, Doo-Sik Kong
    World Neurosurgery 2019 125
  • Computer-extracted MR imaging features are associated with survival in glioblastoma patients
    Maciej A. Mazurowski, Jing Zhang, Katherine B. Peters, Hasan Hobbs
    Journal of Neuro-Oncology 2014 120 3
  • Glioblastoma: does the pre-treatment geometry matter? A postcontrast T1 MRI-based study
    Julián Pérez-Beteta, Alicia Martínez-González, David Molina, Mariano Amo-Salas, Belén Luque, Elena Arregui, Manuel Calvo, José M. Borrás, Carlos López, Marta Claramonte, Juan A. Barcia, Lidia Iglesias, Josué Avecillas, David Albillo, Miguel Navarro, José M. Villanueva, Juan C. Paniagua, Juan Martino, Carlos Velásquez, Beatriz Asenjo, Manuel Benavides, Ismael Herruzo, María del Carmen Delgado, Ana del Valle, Anthony Falkov, Philippe Schucht, Estanislao Arana, Luis Pérez-Romasanta, Víctor M. Pérez-García
    European Radiology 2017 27 3
  • Machine Learning in Neuro-Oncology: Can Data Analysis From 5346 Patients Change Decision-Making Paradigms?
    Christopher A. Sarkiss, Isabelle M. Germano
    World Neurosurgery 2019 124
  • Treatment results and outcome in elderly patients with glioblastoma multiforme – A retrospective single institution analysis
    Markus Hoffermann, Lukas Bruckmann, Kariem Mahdy Ali, Martin Asslaber, Franz Payer, Gord von Campe
    Clinical Neurology and Neurosurgery 2015 128
  • Machine learning: a useful radiological adjunct in determination of a newly diagnosed glioma’s grade and IDH status
    Céline De Looze, Alan Beausang, Jane Cryan, Teresa Loftus, Patrick G. Buckley, Michael Farrell, Seamus Looby, Richard Reilly, Francesca Brett, Hugh Kearney
    Journal of Neuro-Oncology 2018 139 2
  • Treatment Response and Prognosis Evaluation in High‐Grade Glioma: An Imaging Review Based on MRI
    Qing Zhou, Caiqiang Xue, Xiaoai Ke, Junlin Zhou
    Journal of Magnetic Resonance Imaging 2022 56 2
  • Experimental Texture Analysis in Glioblastoma
    Nicolin Hainc, Christoph Stippich, Bram Stieltjes, Severina Leu, Andrea Bink
    Investigative Radiology 2017 52 6
  • Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016
    Luyan Liu, Han Zhang, Islem Rekik, Xiaobo Chen, Qian Wang, Dinggang Shen
    2016 9901
  • Robustness of Radiomics for Survival Prediction of Brain Tumor Patients Depending on Resection Status
    Leon Weninger, Christoph Haarburger, Dorit Merhof
    Frontiers in Computational Neuroscience 2019 13
  • A sparse representation‐based radiomics for outcome prediction of higher grade gliomas
    Guoqing Wu, Zhifeng Shi, Yinsheng Chen, Yuanyuan Wang, Jinhua Yu, Xiaofei Lv, Liang Chen, Xue Ju, Zhongping Chen
    Medical Physics 2019 46 1
  • Predicting Survival in Glioblastoma Patients Using Diffusion MR Imaging Metrics—A Systematic Review
    Valentina Brancato, Silvia Nuzzo, Liberatore Tramontano, Gerolama Condorelli, Marco Salvatore, Carlo Cavaliere
    Cancers 2020 12 10
  • The Nomogram of MRI‐based Radiomics with Complementary Visual Features by Machine Learning Improves Stratification of Glioblastoma Patients: A Multicenter Study
    Yuyun Xu, Xiaodong He, Yumei Li, Peipei Pang, Zhenyu Shu, Xiangyang Gong
    Journal of Magnetic Resonance Imaging 2021 54 2
  • Interpretable Machine Learning with Brain Image and Survival Data
    Matthias Eder, Emanuel Moser, Andreas Holzinger, Claire Jean-Quartier, Fleur Jeanquartier
    BioMedInformatics 2022 2 3
  • Medical Image Computing and Computer Assisted Intervention – MICCAI 2020
    Tao Zhou, Huazhu Fu, Yu Zhang, Changqing Zhang, Xiankai Lu, Jianbing Shen, Ling Shao
    2020 12262
  • A fully automatic extraction of magnetic resonance image features in glioblastoma patients
    Jing Zhang, Daniel P. Barboriak, Hasan Hobbs, Maciej A. Mazurowski
    Medical Physics 2014 41 4
  • A Novel Comprehensive Clinical Stratification Model to Refine Prognosis of Glioblastoma Patients Undergoing Surgical Resection
    Tamara Ius, Fabrizio Pignotti, Giuseppe Maria Della Pepa, Giuseppe La Rocca, Teresa Somma, Miriam Isola, Claudio Battistella, Simona Gaudino, Maurizio Polano, Michele Dal Bo, Daniele Bagatto, Enrico Pegolo, Silvia Chiesa, Mauro Arcicasa, Alessandro Olivi, Miran Skrap, Giovanni Sabatino
    Cancers 2020 12 2
  • Imagerie médicale computationnelle (radiomique) et potentiel en immuno-oncologie
    R. Sun, E.J. Limkin, L. Dercle, S. Reuzé, E.I. Zacharaki, C. Chargari, A. Schernberg, A.S. Dirand, A. Alexis, N. Paragios, É. Deutsch, C. Ferté, C. Robert
    Cancer/Radiothérapie 2017 21 6-7
  • Predicting Survival in Patients with Brain Tumors: Current State-of-the-Art of AI Methods Applied to MRI
    Christian di Noia, James T. Grist, Frank Riemer, Maria Lyasheva, Miriana Fabozzi, Mauro Castelli, Raffaele Lodi, Caterina Tonon, Leonardo Rundo, Fulvio Zaccagna
    Diagnostics 2022 12 9
  • Gliomas
    Rachel Zhao, Andra Valentina Krauze
    2021
  • Quantitative volumetric assessment of baseline enhancing tumor volume as an imaging biomarker predicts overall survival in patients with glioblastoma
    Timo A Auer, Marta Della Seta, Federico Collettini, Julius Chapiro, Sebastian Zschaeck, Pirus Ghadjar, Harun Badakhshi, Julian Florange, Bernd Hamm, Volker Budach, David Kaul
    Acta Radiologica 2021 62 9
  • A three-dimensional computational analysis of magnetic resonance images characterizes the biological aggressiveness in malignant brain tumours
    J. Pérez-Beteta, A. Martínez-González, V. M. Pérez-García
    Journal of The Royal Society Interface 2018 15 149
  • A neuro evolutionary algorithm for patient calibrated prediction of survival in Glioblastoma patients
    Amir Ebrahimi Zade, Seyedhamidreza Shahabi Haghighi, M. Soltani
    Journal of Biomedical Informatics 2021 115
  • Integrative Analysis of mRNA, microRNA, and Protein Correlates of Relative Cerebral Blood Volume Values in GBM Reveals the Role for Modulators of Angiogenesis and Tumor Proliferation
    Arvind Rao, Ganiraju Manyam, Ganesh Rao, Rajan Jain
    Cancer Informatics 2016 15
  • The benefits of decision tree to predict survival in patients with glioblastoma multiforme with the use of clinical and imaging features
    Mohtaram Nematollahi, Mahdie Jajroudi, Farshid Arbabi, Amir Azarhomayoun, Zohreh Azimifar
    Asian Journal of Neurosurgery 2018 13 03
  • Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
    Woo-Sup Han, Il Song Han
    2019 11384
  • Predicting primary outcomes of brain tumor patients with advanced neuroimaging MRI measures
    Svyat Vergun, Josh I. Suhonen, Veena A. Nair, J.S. Kuo, M.K. Baskaya, Camille Garcia-Ramos, Elizabeth E. Meyerand, Vivek Prabhakaran
    Interdisciplinary Neurosurgery 2018 13
  • Automated Machine-Learning Framework Integrating Histopathological and Radiological Information for Predicting IDH1 Mutation Status in Glioma
    Dingqian Wang, Cuicui Liu, Xiuying Wang, Xuejun Liu, Chuanjin Lan, Peng Zhao, William C. Cho, Manuel B. Graeber, Yingchao Liu
    Frontiers in Bioinformatics 2021 1
  • Big Data Analytics for Large‐Scale Multimedia Search
    Henning Müller, Devrim Ünay
    2019
  • Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
    Guoqing Wu, Yuanyuan Wang, Jinhua Yu
    2018 10670
  • Clinical Functional MRI
    Christoph Stippich
    2015
  • Clinical Functional MRI
    Christoph Stippich
    2022
  • Evaluating survival in subjects with astrocytic brain tumors by dynamic susceptibility-weighted perfusion MR imaging
    Matthew L. White, Yan Zhang, Syed A. Jaffar Kazmi, Michele Aizenberg, Nicole Shonka, Fang Yu, Adams Kusi Appiah, Michael C. Burger
    PLOS ONE 2021 16 1
  • Artificial Intelligence in Microbiology: Scope and Challenges Volume 2
    Arinjay Jain, Shipra Dwivedi, Neeru Jain, Vaibhav Mishra, Amit Kumar Madeshiya
    2025 56
  • Imagerie médicale computationnelle (radiomique) : principes et potentiel en onco-pneumologie
    R. Sun, E. Deutsch
    Revue des Maladies Respiratoires Actualités 2020 12 2
  • Machine Learning Model to Identify Prognostic Factors in Glioblastoma: A SEER-Based Analysis
    Batuhan BAKIRARAR, Emrah EGEMEN, Ümit Akın DERE, Fatih YAKAR
    Pamukkale Medical Journal 2023
  • Oncology of CNS Tumors
    K. Ina Ly, Nathalie L. Albert, Elizabeth R. Gerstner
    2019
  • Radiomics and Radiogenomics in Neuro-Oncology
    Soumyaranjan Panda, Kirti Padhi, Kaniskaa Behera, Sanjay Saxena
    2025
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 33 (6)
American Journal of Neuroradiology
Vol. 33, Issue 6
1 Jun 2012
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Survival Analysis of Patients with High-Grade Gliomas Based on Data Mining of Imaging Variables
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
E.I. Zacharaki, N. Morita, P. Bhatt, D.M. O'Rourke, E.R. Melhem, C. Davatzikos
Survival Analysis of Patients with High-Grade Gliomas Based on Data Mining of Imaging Variables
American Journal of Neuroradiology Jun 2012, 33 (6) 1065-1071; DOI: 10.3174/ajnr.A2939

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Survival Analysis of Patients with High-Grade Gliomas Based on Data Mining of Imaging Variables
E.I. Zacharaki, N. Morita, P. Bhatt, D.M. O'Rourke, E.R. Melhem, C. Davatzikos
American Journal of Neuroradiology Jun 2012, 33 (6) 1065-1071; DOI: 10.3174/ajnr.A2939
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Whole-Tumor Histogram and Texture Analyses of DTI for Evaluation of IDH1-Mutation and 1p/19q-Codeletion Status in World Health Organization Grade II Gliomas
  • A Prognostic Model Based on Preoperative MRI Predicts Overall Survival in Patients with Diffuse Gliomas
  • Crossref (62)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology
    E.J. Limkin, R. Sun, L. Dercle, E.I. Zacharaki, C. Robert, S. Reuzé, A. Schernberg, N. Paragios, E. Deutsch, C. Ferté
    Annals of Oncology 2017 28 6
  • Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas
    Biqi Zhang, Ken Chang, Shakti Ramkissoon, Shyam Tanguturi, Wenya Linda Bi, David A. Reardon, Keith L. Ligon, Brian M. Alexander, Patrick Y. Wen, Raymond Y. Huang
    Neuro-Oncology 2017 19 1
  • Multi-Channel 3D Deep Feature Learning for Survival Time Prediction of Brain Tumor Patients Using Multi-Modal Neuroimages
    Dong Nie, Junfeng Lu, Han Zhang, Ehsan Adeli, Jun Wang, Zhengda Yu, LuYan Liu, Qian Wang, Jinsong Wu, Dinggang Shen
    Scientific Reports 2019 9 1
  • Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016
    Dong Nie, Han Zhang, Ehsan Adeli, Luyan Liu, Dinggang Shen
    2016 9901
  • Automated glioma grading on conventional MRI images using deep convolutional neural networks
    Ying Zhuge, Holly Ning, Peter Mathen, Jason Y. Cheng, Andra V. Krauze, Kevin Camphausen, Robert W. Miller
    Medical Physics 2020 47 7
  • A Generic Support Vector Machine Model for Preoperative Glioma Survival Associations
    Kyrre E. Emblem, Marco C. Pinho, Frank G. Zöllner, Paulina Due-Tonnessen, John K. Hald, Lothar R. Schad, Torstein R. Meling, Otto Rapalino, Atle Bjornerud
    Radiology 2015 275 1
  • Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab
    Ken Chang, Biqi Zhang, Xiaotao Guo, Min Zong, Rifaquat Rahman, David Sanchez, Nicolette Winder, David A Reardon, Binsheng Zhao, Patrick Y. Wen, Raymond Y Huang
    Neuro-Oncology 2016 18 12
  • Preoperative dynamic contrast-enhanced MRI correlates with molecular markers of hypoxia and vascularity in specific areas of intratumoral microenvironment and is predictive of patient outcome
    Randy L. Jensen, Michael L. Mumert, David L. Gillespie, Anita Y. Kinney, Matthias C. Schabel, Karen L. Salzman
    Neuro-Oncology 2014 16 2
  • The role of diffusion and perfusion weighted imaging in the differential diagnosis of cerebral tumors: a review and future perspectives
    Patricia Svolos, Evanthia Kousi, Eftychia Kapsalaki, Kyriaki Theodorou, Ioannis Fezoulidis, Constantin Kappas, Ioannis Tsougos
    Cancer Imaging 2014 14 1
  • Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma
    Vasileios G. Kanas, Evangelia I. Zacharaki, Ginu A. Thomas, Pascal O. Zinn, Vasileios Megalooikonomou, Rivka R. Colen
    Computer Methods and Programs in Biomedicine 2017 140

More in this TOC Section

  • SWI or T2*: Which MRI Sequence to Use in the Detection of Cerebral Microbleeds? The Karolinska Imaging Dementia Study
  • Progression of Microstructural Damage in Spinocerebellar Ataxia Type 2: A Longitudinal DTI Study
  • Statin Therapy Does Not Affect the Radiographic and Clinical Profile of Patients with TIA and Minor Stroke
Show more BRAIN

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire