Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleBrainF

The Predictive Value of 3D Time-of-Flight MR Angiography in Assessment of Brain Arteriovenous Malformation Obliteration after Radiosurgery

D.R. Buis, J.C.J. Bot, F. Barkhof, D.L. Knol, F.J. Lagerwaard, B.J. Slotman, W.P. Vandertop and R. van den Berg
American Journal of Neuroradiology February 2012, 33 (2) 232-238; DOI: https://doi.org/10.3174/ajnr.A2744
D.R. Buis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.C.J. Bot
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F. Barkhof
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.L. Knol
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F.J. Lagerwaard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B.J. Slotman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W.P. Vandertop
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. van den Berg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Friedlander RM
    . Clinical practice: arteriovenous malformations of the brain. N Engl J Med 2007; 356: 2704– 12
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Maruyama K,
    2. Kawahara N,
    3. Shin M,
    4. et al
    . The risk of hemorrhage after radiosurgery for cerebral arteriovenous malformations. N Engl J Med 2005; 352: 146– 53
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Heiserman JE,
    2. Dean BL,
    3. Hodak JA,
    4. et al
    . Neurologic complications of cerebral angiography. AJNR Am J Neuroradiol 1994; 15: 1401– 07
    Abstract/FREE Full Text
  4. 4.↵
    1. Dion JE,
    2. Gates PC,
    3. Fox AJ,
    4. et al
    . Clinical events following neuroangiography: a prospective study. Stroke 1987; 18: 997– 1004
    Abstract/FREE Full Text
  5. 5.↵
    1. Earnest F,
    2. Forbes G,
    3. Sandok BA,
    4. et al
    . Complications of cerebral angiography: prospective assessment of risk. AJR Am J Roentgenol 1984; 142: 247– 53
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Komiyama M,
    2. Yamanaka K,
    3. Nishikawa M,
    4. et al
    . Prospective analysis of complications of catheter cerebral angiography in the digital subtraction angiography and magnetic resonance era. Neurol Med Chir (Tokyo) 1998; 38: 534– 39
    PubMed
  7. 7.↵
    1. Dawkins AA,
    2. Evans AL,
    3. Wattam J,
    4. et al
    . Complications of cerebral angiography: a prospective analysis of 2,924 consecutive procedures. Neuroradiology 2007; 49: 753– 59
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Grzyska U,
    2. Freitag J,
    3. Zeumer H
    . Selective cerebral intraarterial DSA. Complication rate and control of risk factors. Neuroradiology 1990; 32: 296– 99
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Bendszus M,
    2. Koltzenburg M,
    3. Burger R,
    4. et al
    . Silent embolism in diagnostic cerebral angiography and neurointerventional procedures: a prospective study. Lancet 1999; 354: 1594– 97
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Morcos SK,
    2. Thomsen HS
    . Adverse reactions to iodinated contrast media. Eur Radiol 2001; 11: 1267– 75
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Ketkar M,
    2. Shrier D
    . An allergic reaction to intraarterial nonionic contrast material. AJNR Am J Neuroradiol 2003; 24: 292
    FREE Full Text
  12. 12.↵
    1. King-Im JM,
    2. Trivedi R,
    3. Cross J,
    4. et al
    . Conventional digital subtraction x-ray angiography versus magnetic resonance angiography in the evaluation of carotid disease: patient satisfaction and preferences. Clin Radiol 2004; 59: 358– 63
    CrossRefPubMed
  13. 13.↵
    1. Thierry-Chef I,
    2. Simon S,
    3. Miller D
    . Radiation dose and cancer risk among pediatric patients undergoing interventional neuroradiology procedures. Pediatr Radiol 2006; 36: 159– 62
    CrossRefPubMed
  14. 14.↵
    1. Swoboda NA,
    2. Armstrong DG,
    3. Smith J,
    4. et al
    . Pediatric patient surface doses in neuroangiography. Pediatr Radiol 2005; 35: 859– 66
    CrossRefPubMed
  15. 15.↵
    1. Raelson CA,
    2. Kanal KM,
    3. Vavilala MS,
    4. et al
    . Radiation dose and excess risk of cancer in children undergoing neuroangiography. Am J Roentgenol 2009; 193: 1621– 28
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Stein SC,
    2. Burnett MG,
    3. Zager EL,
    4. et al
    . Completion angiography for surgically treated cerebral aneurysms: an economic analysis. Neurosurgery 2007; 61: 1162– 67
    CrossRefPubMed
  17. 17.↵
    1. Giesel FL,
    2. Essig M,
    3. Zabel-Du-Bois A,
    4. et al
    . High-contrast computed tomographic angiography better detects residual intracranial arteriovenous malformations in long-term follow-up after radiotherapy than 1.5-Tesla time-of-flight magnetic resonance angiography. Acta Radiol 2010; 51: 64– 70
    Abstract/FREE Full Text
  18. 18.↵
    1. Eddleman CS,
    2. Jeong HJ,
    3. Hurley MC,
    4. et al
    . 4D radial acquisition contrast-enhanced MR angiography and intracranial arteriovenous malformations: quickly approaching digital subtraction angiography. Stroke 2009; 40: 2749– 53
    Abstract/FREE Full Text
  19. 19.↵
    1. Hadizadeh DR,
    2. von Falkenhausen M,
    3. Gieseke J,
    4. et al
    . Cerebral arteriovenous malformation: Spetzler-Martin classification at subsecond-temporal-resolution four-dimensional MR angiography compared with that at DSA. Radiology 2008; 246: 205– 13. Epub 2007 Oct 19
    CrossRefPubMed
  20. 20.↵
    1. Reinacher PC,
    2. Stracke P,
    3. Reinges MH,
    4. et al
    . Contrast-enhanced time-resolved 3-D MRA: applications in neurosurgery and interventional neuroradiology. Neuroradiology 2007; 49 (suppl 1): S3– 13
    CrossRefPubMed
  21. 21.↵
    1. Taschner CA,
    2. Gieseke J,
    3. Le Thuc V,
    4. et al
    . Intracranial arteriovenous malformation: time-resolved contrast-enhanced MR angiography with combination of parallel imaging, keyhole acquisition, and k-space sampling techniques at 1.5 T. Radiology 2008; 246: 871– 79. Epub 2008 Jan 14
    CrossRefPubMed
  22. 22.↵
    1. Weintraub MI,
    2. Khoury A,
    3. Cole SP
    . Biologic effects of 3 Tesla (T) MR imaging comparing traditional 1.5 T and 0.6 T in 1023 consecutive outpatients. J Neuroimaging 2007; 17: 241– 45
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Han JH,
    2. Kim DG,
    3. Chung HT,
    4. et al
    . Clinical and neuroimaging outcome of cerebral arteriovenous malformations after gamma knife surgery: analysis of the radiation injury rate depending on the arteriovenous malformation volume. J Neurosurg 2008; 109: 191– 98
    CrossRefPubMed
  24. 24.↵
    1. Douglas JG,
    2. Goodkin R
    . Treatment of arteriovenous malformations using gamma knife surgery: the experience at the University of Washington from 2000 to 2005. J Neurosurg 2008; 109 (suppl): 51– 56
    PubMed
  25. 25.↵
    1. Kasliwal MK,
    2. Kale SS,
    3. Gupta A,
    4. et al
    . Outcome after hemorrhage following gamma knife surgery for cerebral arteriovenous malformations. J Neurosurg 2009; 110: 1003– 09
    CrossRefPubMed
  26. 26.↵
    1. Kiran N,
    2. Kale S,
    3. Kasliwal M,
    4. et al
    . Gamma knife radiosurgery for arteriovenous malformations of basal ganglia, thalamus and brainstem: a retrospective study comparing the results with that for AVMs at other intracranial locations. Acta Neurochir (Wien) 2009; 151: 1575– 82. Epub 2009 May 5
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Buis DR,
    2. Dirven CM,
    3. Lagerwaard FJ,
    4. et al
    . Radiosurgery of brain arteriovenous malformations in children. J Neurol 2008; 255: 551– 60
    CrossRefPubMed
  28. 28.↵
    1. Lunsford LD
    1. Lindquist C,
    2. Steiner L
    . Stereotactic radiosurgical treatment of arteriovenous malformations. In: Lunsford LD ed. Modern Stereotactic Neurosurgery. Boston, Massachusetts: Martinus Nijhoff; 1988:491–505
  29. 29.↵
    1. Steinberg GK,
    2. Fabrikant JI,
    3. Marks MP,
    4. et al
    . Stereotactic heavy-charged-particle Bragg-peak radiation for intracranial arteriovenous malformations. N Engl J Med 1990; 323: 96– 101
    PubMed
  30. 30.↵
    1. Spetzler RF,
    2. Martin NA
    . A proposed grading system for arteriovenous malformations. J Neurosurg 1986; 65: 476– 83
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Petkova M,
    2. Gauvrit JY,
    3. Trystram D,
    4. et al
    . Three-dimensional dynamic time-resolved contrast-enhanced MRA using parallel imaging and a variable rate k-space sampling strategy in intracranial arteriovenous malformations. J Magn Reson Imaging 2009; 29: 7– 12
    CrossRefPubMed
  32. 32.↵
    1. Kunishima K,
    2. Mori H,
    3. Itoh D,
    4. et al
    . Assessment of arteriovenous malformations with 3-Tesla time-resolved, contrast-enhanced, three-dimensional magnetic resonance angiography. J Neurosurg 2009; 110: 492– 99
    CrossRefPubMed
  33. 33.↵
    1. Saleh RS,
    2. Lohan DG,
    3. Villablanca JP,
    4. et al
    . Assessment of craniospinal arteriovenous malformations at 3T with highly temporally and highly spatially resolved contrast-enhanced MR angiography. AJNR Am J Neuroradiol 2008; 29: 1024– 31
    Abstract/FREE Full Text
  34. 34.↵
    1. Heidenreich JO,
    2. Schilling AM,
    3. Unterharnscheidt F,
    4. et al
    . Assessment of 3D-TOF-MRA at 3.0 Tesla in the characterization of the angioarchitecture of cerebral arteriovenous malformations: a preliminary study. Acta Radiol 2007; 48: 678– 86
    FREE Full Text
  35. 35.↵
    1. Pollock BE,
    2. Flickinger JC
    . Modification of the radiosurgery-based arteriovenous malformation grading system. Neurosurgery 2008; 63: 239– 43
    CrossRefPubMed
  36. 36.↵
    1. Metz C
    . ROC analysis in medical imaging: a tutorial review of the literature. Radiol Phys Technol 2008; 1: 2– 12
    CrossRefPubMed
  37. 37.↵
    1. Spetzler RF,
    2. Hargraves RW,
    3. McCormick PW,
    4. et al
    . Relationship of perfusion pressure and size to risk of hemorrhage from arteriovenous malformations. J Neurosurg 1992; 76: 918– 23
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Oppenheim C,
    2. Meder JF,
    3. Trystram D,
    4. et al
    . Radiosurgery of cerebral arteriovenous malformations: is an early angiogram needed? AJNR Am J Neuroradiol 1999; 20: 475– 81
    Abstract/FREE Full Text
  39. 39.↵
    1. Buis DR,
    2. Lagerwaard FJ,
    3. Dirven CM,
    4. et al
    . Delineation of brain AVMs on MR-angiography for the purpose of stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 2007; 67: 308– 16
    CrossRefPubMed
  40. 40.↵
    1. Pollock BE,
    2. Kondziolka D,
    3. Flickinger JC,
    4. et al
    . Magnetic resonance imaging: an accurate method to evaluate arteriovenous malformations after stereotactic radiosurgery. J Neurosurg 1996; 85: 1044– 49
    CrossRefPubMed
  41. 41.↵
    1. Gauvrit JY,
    2. Oppenheim C,
    3. Nataf F,
    4. et al
    . Three-dimensional dynamic magnetic resonance angiography for the evaluation of radiosurgically treated cerebral arteriovenous malformations. Eur Radiol 2006; 16: 583– 91
    CrossRefPubMed
  42. 42.↵
    1. Mukherji SK,
    2. Quisling RG,
    3. Kubilis PS,
    4. et al
    . Intracranial arteriovenous malformations: quantitative analysis of magnitude contrast MR angiography versus gradient-echo MR imaging versus conventional angiography. Radiology 1995; 196: 187– 93
    PubMed
  43. 43.↵
    1. Stock KW,
    2. Wetzel S,
    3. Kirsch E,
    4. et al
    . Anatomic evaluation of the circle of Willis: MR angiography versus intraarterial digital subtraction angiography. AJNR Am J Neuroradiol 1996; 17: 1495– 99
    Abstract
  44. 44.↵
    1. Buis DR,
    2. van den Berg R,
    3. Lagerwaard FJ,
    4. et al
    . Brain arteriovenous malformations: from diagnosis to treatment. J Neurosurg Sci 2011; 55: 39– 56
    PubMed
  45. 45.↵
    1. Nowinski WL,
    2. Puspitasaari F,
    3. Volkau I,
    4. et al
    . Comparison of magnetic resonance angiography scans on 1.5, 3, and 7 Tesla units: a quantitative study of 3-dimensional cerebrovasculature. J Neuroimaging 2011 Mar 29. [Epub ahead of print]
  46. 46.↵
    1. Saleh RS,
    2. Singhal A,
    3. Lohan D,
    4. et al
    . Assessment of cerebral arteriovenous malformations with high temporal and spatial resolution contrast-enhanced magnetic resonance angiography: a review from protocol to clinical application. Top Magn Reson Imaging 2008; 19: 251– 57
    CrossRefPubMed
  47. 47.↵
    1. Lee KE,
    2. Choi CG,
    3. Choi JW,
    4. et al
    . Detection of residual brain arteriovenous malformations after radiosurgery: diagnostic accuracy of contrast-enhanced three-dimensional time of flight MR angiography at 3.0 Tesla. Korean J Radiol 2009; 10: 333– 39
    CrossRefPubMed
  48. 48.↵
    1. Ozsarlak O,
    2. Van Goethem JW,
    3. Maes M,
    4. et al
    . MR angiography of the intracranial vessels: technical aspects and clinical applications. Neuroradiology 2004; 46: 955– 72
    CrossRefPubMedWeb of Science
  49. 49.↵
    1. Unlu E,
    2. Temizoz O,
    3. Albayram S,
    4. et al
    . Contrast-enhanced MR 3D angiography in the assessment of brain AVMs. Eur J Radiol 2006; 60: 367– 78
    CrossRefPubMed
  50. 50.↵
    1. Parmar H,
    2. Ivancevic MK,
    3. Dudek N,
    4. et al
    . Neuroradiologic applications of dynamic MR angiography at 3 T. Magn Reson Imaging Clin N Am 2009; 17: 63– 75
    CrossRefPubMed
  51. 51.↵
    1. Yen CP,
    2. Varady P,
    3. Sheehan J,
    4. et al
    . Subtotal obliteration of cerebral arteriovenous malformations after gamma knife surgery. J Neurosurg 2007; 106: 361– 69
    CrossRefPubMed
  52. 52.↵
    1. Buis DR,
    2. van den Berg R,
    3. Lycklama G,
    4. et al
    . Spontaneous regression of brain arteriovenous malformations: a clinical study and a systematic review of the literature. J Neurol 2004; 251: 1375– 82
    CrossRefPubMed
  53. 53.↵
    1. van den Berg R,
    2. Buis DR,
    3. Lagerwaard FJ,
    4. et al
    . Extensive white matter changes after stereotactic radiosurgery for brain arteriovenous malformations: a prognostic sign for obliteration? Neurosurgery 2008; 63: 1064– 69
    CrossRefPubMed
  54. 54.↵
    1. Schaller C,
    2. Schramm J
    . Arteriovenous malformations and magnetic resonance imaging. J Neurosurg 1997; 87: 647– 49
    PubMed
  55. 55.↵
    1. Buis DR,
    2. Meijer OW,
    3. van den Berg R,
    4. et al
    . Clinical outcome after repeated radiosurgery for brain arteriovenous malformations. Radiother Oncol 2010; 95: 250– 56
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 33 (2)
American Journal of Neuroradiology
Vol. 33, Issue 2
1 Feb 2012
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Predictive Value of 3D Time-of-Flight MR Angiography in Assessment of Brain Arteriovenous Malformation Obliteration after Radiosurgery
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
D.R. Buis, J.C.J. Bot, F. Barkhof, D.L. Knol, F.J. Lagerwaard, B.J. Slotman, W.P. Vandertop, R. van den Berg
The Predictive Value of 3D Time-of-Flight MR Angiography in Assessment of Brain Arteriovenous Malformation Obliteration after Radiosurgery
American Journal of Neuroradiology Feb 2012, 33 (2) 232-238; DOI: 10.3174/ajnr.A2744

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
The Predictive Value of 3D Time-of-Flight MR Angiography in Assessment of Brain Arteriovenous Malformation Obliteration after Radiosurgery
D.R. Buis, J.C.J. Bot, F. Barkhof, D.L. Knol, F.J. Lagerwaard, B.J. Slotman, W.P. Vandertop, R. van den Berg
American Journal of Neuroradiology Feb 2012, 33 (2) 232-238; DOI: 10.3174/ajnr.A2744
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Diagnostic Performance of TOF, 4D MRA, Arterial Spin-Labeling, and Susceptibility-Weighted Angiography Sequences in the Post-Radiosurgery Monitoring of Brain AVMs
  • Are Dynamic Arterial Spin-Labeling MRA and Time-Resolved Contrast-Enhanced MRA Suited for Confirmation of Obliteration following Gamma Knife Radiosurgery of Brain Arteriovenous Malformations?
  • Follow-Up MRI for Small Brain AVMs Treated by Radiosurgery: Is Gadolinium Really Necessary?
  • Early Hemodynamic Response Assessment of Stereotactic Radiosurgery for a Cerebral Arteriovenous Malformation Using 4D Flow MRI
  • Management of Brain Arteriovenous Malformations: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association
  • Fast Contrast-Enhanced 4D MRA and 4D Flow MRI Using Constrained Reconstruction (HYPRFlow): Potential Applications for Brain Arteriovenous Malformations
  • Further Examination of Diagnostic Performance in the Context of a Fellows' Journal Club Article
  • Reply:
  • Crossref (31)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Management of Brain Arteriovenous Malformations: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association
    Colin P. Derdeyn, Gregory J. Zipfel, Felipe C. Albuquerque, Daniel L. Cooke, Edward Feldmann, Jason P. Sheehan, James C. Torner
    Stroke 2017 48 8
  • The predictive value of magnetic resonance imaging in evaluating intracranial arteriovenous malformation obliteration after stereotactic radiosurgery
    Cheng-Chia Lee, Michael A. Reardon, Benjamin Z. Ball, Ching-Jen Chen, Chun-Po Yen, Zhiyuan Xu, Max Wintermark, Jason Sheehan
    Journal of Neurosurgery 2015 123 1
  • Noncontrast‐enhanced three‐dimensional (3D) intracranial MR angiography using pseudocontinuous arterial spin labeling and accelerated 3D radial acquisition
    Huimin Wu, Walter F. Block, Patrick A. Turski, Charles A. Mistretta, Kevin M. Johnson
    Magnetic Resonance in Medicine 2013 69 3
  • Magnetic Resonance Imaging Assessment of Cerebral Arteriovenous Malformation Obliteration After Stereotactic Radiosurgery
    Timothy E. O'Connor, William A. Friedman
    Neurosurgery 2013 73 5
  • Fast Contrast-Enhanced 4D MRA and 4D Flow MRI Using Constrained Reconstruction (HYPRFlow): Potential Applications for Brain Arteriovenous Malformations
    W. Chang, Y. Wu, K. Johnson, M. Loecher, O. Wieben, M. Edjlali, C. Oppenheim, P. Roca, J. Hald, B. Aagaard-Kienitz, D. Niemann, C. Mistretta, P. Turski
    American Journal of Neuroradiology 2015 36 6
  • Are Dynamic Arterial Spin-Labeling MRA and Time-Resolved Contrast-Enhanced MRA Suited for Confirmation of Obliteration following Gamma Knife Radiosurgery of Brain Arteriovenous Malformations?
    A. Rojas-Villabona, F.B. Pizzini, T. Solbach, M. Sokolska, G. Ricciardi, C. Lemonis, E. DeVita, Y. Suzuki, M.J.P. van Osch, R.I. Foroni, M. Longhi, S. Montemezzi, D. Atkinson, N. Kitchen, A. Nicolato, X. Golay, H.R. Jäger
    American Journal of Neuroradiology 2021 42 4
  • Silent MRA: arterial spin labeling magnetic resonant angiography with ultra-short time echo assessing cerebral arteriovenous malformation
    Nobuhiko Arai, Takenori Akiyama, Kazuhiro Fujiwara, Kazunari Koike, Satoshi Takahashi, Takashi Horiguchi, Masahiro Jinzaki, Kazunari Yoshida
    Neuroradiology 2020 62 4
  • Non-Enhanced MR Imaging of Cerebral Arteriovenous Malformations at 7 Tesla
    Karsten H. Wrede, Philipp Dammann, Sören Johst, Christoph Mönninghoff, Marc Schlamann, Stefan Maderwald, I. Erol Sandalcioglu, Mark E. Ladd, Michael Forsting, Ulrich Sure, Lale Umutlu
    European Radiology 2016 26 3
  • Early Hemodynamic Response Assessment of Stereotactic Radiosurgery for a Cerebral Arteriovenous Malformation Using 4D Flow MRI
    C.Q. Li, A. Hsiao, J. Hattangadi-Gluth, J. Handwerker, N. Farid
    American Journal of Neuroradiology 2018 39 4
  • Follow-Up MRI for Small Brain AVMs Treated by Radiosurgery: Is Gadolinium Really Necessary?
    X. Leclerc, O. Guillaud, N. Reyns, J. Hodel, O. Outteryck, F. Bala, N. Bricout, M. Bretzner, N. Ramdane, J.-P. Pruvo, L. Hacein-Bey, G. Kuchcinski
    American Journal of Neuroradiology 2020 41 3

More in this TOC Section

  • Statin Therapy Does Not Affect the Radiographic and Clinical Profile of Patients with TIA and Minor Stroke
  • Usefulness of Quantitative Susceptibility Mapping for the Diagnosis of Parkinson Disease
  • White Matter Alterations in the Brains of Patients with Active, Remitted, and Cured Cushing Syndrome: A DTI Study
Show more BRAIN

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire