Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleBrain
Open Access

Brain Iron Quantification in Mild Traumatic Brain Injury: A Magnetic Field Correlation Study

E. Raz, J.H. Jensen, Y. Ge, J.S. Babb, L. Miles, J. Reaume, R.I. Grossman and M. Inglese
American Journal of Neuroradiology November 2011, 32 (10) 1851-1856; DOI: https://doi.org/10.3174/ajnr.A2637
E. Raz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.H. Jensen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y. Ge
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.S. Babb
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Miles
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Reaume
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.I. Grossman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Inglese
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Brown AW,
    2. Leibson CL,
    3. Malec JF,
    4. et al
    . Long-term survival after traumatic brain injury: a population-based analysis. Neurorehabilitation 2004;19:37–43
    PubMed
  2. 2.↵
    1. Bazarian JJ,
    2. McClung J,
    3. Shah MN,
    4. et al
    . Mild traumatic brain injury in the United States, 1998–2000. Brain Injury 2005;19:85–91
    PubMedWeb of Science
  3. 3.↵
    1. Ropper AH,
    2. Gorson KC
    . Clinical practice. Concussion. N Engl J Med 2007;356:166–72
    CrossRef
  4. 4.↵
    1. Thurman DJ,
    2. Alverson C,
    3. Dunn KA,
    4. et al
    . Traumatic brain injury in the United States: a public health perspective. J Head Trauma Rehabil 1999;14:602–15
    PubMedWeb of Science
  5. 5.↵
    1. Hammoud DA,
    2. Wasserman BA
    . Diffuse axonal injuries: pathophysiology and imaging. Neuroimaging Clin N Am 2002;12:205–16
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Medana IM,
    2. Esiri MM
    . Axonal damage: a key predictor of outcome in human CNS diseases. Brain 2003;126:515–30
    Abstract/FREE Full Text
  7. 7.↵
    1. Bakay L,
    2. Lee JC,
    3. Lee GC,
    4. et al
    . Experimental cerebral concussion. Part 1: an electron microscopic study. J Neurosurg 1977;47:525–31
    PubMedWeb of Science
  8. 8.↵
    1. Jane JA,
    2. Steward O,
    3. Gennarelli TA
    . Axonal degeneration induced by experimental noninvasive minor head injury. J Neurosurg 1985;62:96–100
    PubMedWeb of Science
  9. 9.↵
    1. Adelson PD,
    2. Whalen MJ,
    3. Kochanek PM,
    4. et al
    . Blood brain barrier permeability and acute inflammation in two models of traumatic brain injury in the immature rat: a preliminary report. Acta Neurochir Suppl 1998;71:104–06
    PubMed
  10. 10.↵
    1. Povlishock JT
    . Traumatically induced axonal injury: pathogenesis and pathobiological implications. Brain Pathol 1992;2:1–12
    PubMedWeb of Science
  11. 11.↵
    1. Onyszchuk G,
    2. Levine SM,
    3. Brooks WM,
    4. et al
    . Post-acute pathological changes in the thalamus and internal capsule in aged mice following controlled cortical impact injury: a magnetic resonance imaging, iron histochemical, and glial immunohistochemical study. Neurosci Lett 2009;452:204–08
    CrossRefPubMed
  12. 12.↵
    1. Jensen JH,
    2. Szulc K,
    3. Hu C,
    4. et al
    . Magnetic field correlation as a measure of iron-generated magnetic field inhomogeneities in the brain. Magn Reson Med 2009;61:481–85
    CrossRefPubMed
  13. 13.↵
    1. Jensen JH,
    2. Chandra R,
    3. Ramani A,
    4. et al
    . Magnetic field correlation imaging. Magn Reson Med 2006;55:1350–61
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Sukstanskii AL,
    2. Yablonskiy DA
    . Gaussian approximation in the theory of MR signal formation in the presence of structure-specific magnetic field inhomogeneities. J Magn Reson 2003;163:236–47
    CrossRefPubMed
  15. 15.↵
    1. Ge Y,
    2. Jensen JH,
    3. Lu H,
    4. et al
    . Quantitative assessment of iron accumulation in the deep gray matter of multiple sclerosis by magnetic field correlation imaging. AJNR J Neuroradiol 2007;28:1639–44
    CrossRef
  16. 16.↵
    1. Kay T,
    2. Harrington D,
    3. Adams R,
    4. et al
    . Definition of mild traumatic brain injury. J Head Trauma Rehabil 1993;8:86–87
    CrossRef
  17. 17.↵
    1. Trenerry M,
    2. Crosson B,
    3. LeBoe J,
    4. et al
    . Stroop Neuropsychological Screening Test Manual. Odessa, Florida: Psychological Assessment Resources; 1989
  18. 18.↵
    1. Delis DC,
    2. Kramer JH,
    3. Kaplan E,
    4. et al
    . Reliability and validity of the Delis-Kaplan Executive Function System: an update. J Int Neuropsychol Soc 2004;10:301–03
    PubMedWeb of Science
  19. 19.↵
    1. Aubry M,
    2. Cantu R,
    3. Dvorak J,
    4. et al
    . Summary and agreement statement of the First International Conference on Concussion in Sport, Vienna 2001. Recommendations for the improvement of safety and health of athletes who may suffer concussive injuries. Br J Sports Med 2002;36:6–10
  20. 20.↵
    1. Lull N,
    2. Noé E,
    3. Lull JJ,
    4. et al
    . Thalamic metabolism and neurological outcome after traumatic brain injury. A voxel-based morphometric FDG-PET study. Neurologia 2010;25:174–80
    PubMed
  21. 21.↵
    1. Lifshitz J,
    2. Kelley BJ,
    3. Povlishock JT
    . Perisomatic thalamic axotomy after diffuse traumatic brain injury is associated with atrophy rather than cell death. J Neuropathol Exp Neurol 2007;66:218–29
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Haber SN,
    2. Calzavara R
    . The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull 2009;78:69–74
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Shaw NA
    . The neurophysiology of concussion. Prog Neurobiol 2002;67:281–344
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Sipe JC,
    2. Lee P,
    3. Beutler E
    . Brain iron metabolism and neurodegenerative disorders. Dev Neurosci 2002;24:188–96
    CrossRefPubMed
  25. 25.↵
    1. Connor JR,
    2. Menzies SL,
    3. Burdo JR,
    4. et al
    . Iron and iron management proteins in neurobiology. Pediatr Neurol 2001;25:118–29
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Campbell A,
    2. Smith MA,
    3. Sayre LM,
    4. et al
    . Mechanisms by which metals promote events connected to neurodegenerative diseases. Brain Res Bull 2001;55:125–32
    CrossRefPubMed
  27. 27.↵
    1. Greve MW,
    2. Zink BJ
    . Pathophysiology of traumatic brain injury. Mt Sinai J Med 2009;76:97–104
    CrossRefPubMed
  28. 28.↵
    1. Hall ED,
    2. Vaishnav RA,
    3. Mustafa AG
    . Antioxidant therapies for traumatic brain injury. Neurotherapeutics 2010;7:51–61
    CrossRefPubMed
  29. 29.↵
    1. Bigler ED
    . Neuropsychological results and neuropathological findings at autopsy in a case of mild traumatic brain injury. J Int Neuropsychol Soc 2004;10:794–806
    PubMedWeb of Science
  30. 30.↵
    1. Adelson PD,
    2. Jenkins LW,
    3. Hamilton RL,
    4. et al
    . Histopathologic response of the immature rat to diffuse traumatic brain injury. J Neurotrauma 2001;18:967–76
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Long DA,
    2. Ghosh K,
    3. Moore AN,
    4. et al
    . Deferoxamine improves spatial memory performance following experimental brain injury in rats. Brain Res 1996;717:109–17
    CrossRefPubMed
  32. 32.↵
    1. Craelius W,
    2. Migdal MW,
    3. Luessenhop CP,
    4. et al
    . Iron deposits surrounding multiple sclerosis plaques. Arch Pathol Lab Med 1982;106:397–99
    PubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 32 (10)
American Journal of Neuroradiology
Vol. 32, Issue 10
1 Nov 2011
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Brain Iron Quantification in Mild Traumatic Brain Injury: A Magnetic Field Correlation Study
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
E. Raz, J.H. Jensen, Y. Ge, J.S. Babb, L. Miles, J. Reaume, R.I. Grossman, M. Inglese
Brain Iron Quantification in Mild Traumatic Brain Injury: A Magnetic Field Correlation Study
American Journal of Neuroradiology Nov 2011, 32 (10) 1851-1856; DOI: 10.3174/ajnr.A2637

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Brain Iron Quantification in Mild Traumatic Brain Injury: A Magnetic Field Correlation Study
E. Raz, J.H. Jensen, Y. Ge, J.S. Babb, L. Miles, J. Reaume, R.I. Grossman, M. Inglese
American Journal of Neuroradiology Nov 2011, 32 (10) 1851-1856; DOI: 10.3174/ajnr.A2637
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Abbreviations
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Individualised quantitative susceptibility mapping reveals abnormal hippocampal iron markers in acute mild traumatic brain injury
  • Magnetic susceptibility of the hippocampal subfields and basal ganglia in acute mild traumatic brain injury
  • Cortical iron-related markers are elevated in mild Traumatic Brain Injury: An individual-level quantitative susceptibility mapping study
  • Distribution of paramagnetic and diamagnetic cortical substrates following mild Traumatic Brain Injury: A depth- and curvature-based quantitative susceptibility mapping study
  • Altered oligodendroglia and astroglia in chronic traumatic encephalopathy
  • Single Cell Molecular Alterations Reveal Pathogenesis and Targets of Concussive Brain Injury
  • Brain iron overload following intracranial haemorrhage
  • Classification algorithms using multiple MRI features in mild traumatic brain injury
  • Crossref (80)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury
    Marcelo Farina, Daiana Silva Avila, João Batista Teixeira da Rocha, Michael Aschner
    Neurochemistry International 2013 62 5
  • Mild Traumatic Brain Injury: Longitudinal Regional Brain Volume Changes
    Yongxia Zhou, Andrea Kierans, Damon Kenul, Yulin Ge, Joseph Rath, Joseph Reaume, Robert I. Grossman, Yvonne W. Lui
    Radiology 2013 267 3
  • Deletion of ferritin H in neurons counteracts the protective effect of melatonin against traumatic brain injury‐induced ferroptosis
    Tongyu Rui, Haochen Wang, Qianqian Li, Ying Cheng, Yuan Gao, Xuexian Fang, Xuying Ma, Guang Chen, Cheng Gao, Zhiya Gu, Shunchen Song, Jian Zhang, Chunling Wang, Zufeng Wang, Tao Wang, Mingyang Zhang, Junxia Min, Xiping Chen, Luyang Tao, Fudi Wang, Chengliang Luo
    Journal of Pineal Research 2021 70 2
  • Single cell molecular alterations reveal target cells and pathways of concussive brain injury
    Douglas Arneson, Guanglin Zhang, Zhe Ying, Yumei Zhuang, Hyae Ran Byun, In Sook Ahn, Fernando Gomez-Pinilla, Xia Yang
    Nature Communications 2018 9 1
  • Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease
    Md. Jakaria, Abdel Ali Belaidi, Ashley I. Bush, Scott Ayton
    Journal of Neurochemistry 2021 159 5
  • Neuroimaging Biomarkers in Mild Traumatic Brain Injury (mTBI)
    Erin D. Bigler
    Neuropsychology Review 2013 23 3
  • Brain iron overload following intracranial haemorrhage
    Thomas Garton, Richard F Keep, Ya Hua, Guohua Xi
    Stroke and Vascular Neurology 2016 1 4
  • The Role of Iron, Its Metabolism and Ferroptosis in Traumatic Brain Injury
    Sicheng Tang, Pan Gao, Hanmin Chen, Xiangyue Zhou, Yibo Ou, Yue He
    Frontiers in Cellular Neuroscience 2020 14
  • The Involvement of Iron in Traumatic Brain Injury and Neurodegenerative Disease
    Maria Daglas, Paul A. Adlard
    Frontiers in Neuroscience 2018 12
  • Deferoxamine Attenuates Acute Hydrocephalus After Traumatic Brain Injury in Rats
    Jinbing Zhao, Zhi Chen, Guohua Xi, Richard F. Keep, Ya Hua
    Translational Stroke Research 2014 5 5

More in this TOC Section

  • Multimodal CT Provides Improved Performance for Lacunar Infarct Detection
  • Optimal MRI Sequence for Identifying Occlusion Location in Acute Stroke: Which Value of Time-Resolved Contrast-Enhanced MRA?
  • Evaluating the Effects of White Matter Multiple Sclerosis Lesions on the Volume Estimation of 6 Brain Tissue Segmentation Methods
Show more BRAIN

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire