Skip to main content
Advertisement
  • Main menu
  • User menu
  • Search
  • English ▼
    • English
    • Afrikaans
    • Albanian
    • Amharic
    • Arabic
    • Armenian
    • Azerbaijani
    • Basque
    • Belarusian
    • Bengali
    • Bosnian
    • Bulgarian
    • Catalan
    • Cebuano
    • Chichewa
    • Chinese (Simplified)
    • Chinese (Traditional)
    • Corsican
    • Croatian
    • Czech
    • Danish
    • Dutch
    • Esperanto
    • Estonian
    • Filipino
    • Finnish
    • French
    • Frisian
    • Galician
    • Georgian
    • German
    • Greek
    • Gujarati
    • Haitian Creole
    • Hausa
    • Hawaiian
    • Hebrew
    • Hindi
    • Hmong
    • Hungarian
    • Icelandic
    • Igbo
    • Indonesian
    • Irish
    • Italian
    • Japanese
    • Javanese
    • Kannada
    • Kazakh
    • Khmer
    • Korean
    • Kurdish (Kurmanji)
    • Kyrgyz
    • Lao
    • Latin
    • Latvian
    • Lithuanian
    • Luxembourgish
    • Macedonian
    • Malagasy
    • Malay
    • Malayalam
    • Maltese
    • Maori
    • Marathi
    • Mongolian
    • Myanmar (Burmese)
    • Nepali
    • Norwegian
    • Pashto
    • Persian
    • Polish
    • Portuguese
    • Punjabi
    • Romanian
    • Russian
    • Samoan
    • Scottish Gaelic
    • Serbian
    • Sesotho
    • Shona
    • Sindhi
    • Sinhala
    • Slovak
    • Slovenian
    • Somali
    • Spanish
    • Sudanese
    • Swahili
    • Swedish
    • Tajik
    • Tamil
    • Telugu
    • Thai
    • Turkish
    • Ukrainian
    • Urdu
    • Uzbek
    • Vietnamese
    • Welsh
    • Xhosa
    • Yiddish
    • Yoruba
    • Zulu

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

English ▼
  • English
  • Afrikaans
  • Albanian
  • Amharic
  • Arabic
  • Armenian
  • Azerbaijani
  • Basque
  • Belarusian
  • Bengali
  • Bosnian
  • Bulgarian
  • Catalan
  • Cebuano
  • Chichewa
  • Chinese (Simplified)
  • Chinese (Traditional)
  • Corsican
  • Croatian
  • Czech
  • Danish
  • Dutch
  • Esperanto
  • Estonian
  • Filipino
  • Finnish
  • French
  • Frisian
  • Galician
  • Georgian
  • German
  • Greek
  • Gujarati
  • Haitian Creole
  • Hausa
  • Hawaiian
  • Hebrew
  • Hindi
  • Hmong
  • Hungarian
  • Icelandic
  • Igbo
  • Indonesian
  • Irish
  • Italian
  • Japanese
  • Javanese
  • Kannada
  • Kazakh
  • Khmer
  • Korean
  • Kurdish (Kurmanji)
  • Kyrgyz
  • Lao
  • Latin
  • Latvian
  • Lithuanian
  • Luxembourgish
  • Macedonian
  • Malagasy
  • Malay
  • Malayalam
  • Maltese
  • Maori
  • Marathi
  • Mongolian
  • Myanmar (Burmese)
  • Nepali
  • Norwegian
  • Pashto
  • Persian
  • Polish
  • Portuguese
  • Punjabi
  • Romanian
  • Russian
  • Samoan
  • Scottish Gaelic
  • Serbian
  • Sesotho
  • Shona
  • Sindhi
  • Sinhala
  • Slovak
  • Slovenian
  • Somali
  • Spanish
  • Sudanese
  • Swahili
  • Swedish
  • Tajik
  • Tamil
  • Telugu
  • Thai
  • Turkish
  • Ukrainian
  • Urdu
  • Uzbek
  • Vietnamese
  • Welsh
  • Xhosa
  • Yiddish
  • Yoruba
  • Zulu
  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates


Improved Turnaround Times | Median time to first decision: 12 days

Research ArticlePediatric Neuroimaging
Open Access

Quantitative Fiber Tracking of the Optic Radiation Is Correlated with Visual-Evoked Potential Amplitude in Preterm Infants

H.C. Glass, J.I. Berman, A.M. Norcia, E.E. Rogers, R.G. Henry, C. Hou, A.J. Barkovich and W.V. Good
American Journal of Neuroradiology September 2010, 31 (8) 1424-1429; DOI: https://doi.org/10.3174/ajnr.A2110
H.C. Glass
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.I. Berman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.M. Norcia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E.E. Rogers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.G. Henry
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Hou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.J. Barkovich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W.V. Good
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Hoyert DL,
    2. Mathews TJ,
    3. Menacker F,
    4. et al
    . Annual summary of vital statistics: 2004. Pediatrics 2006;117:168–83
    Abstract/FREE Full TextGoogle Scholar
  2. 2.↵
    1. Cioni G,
    2. Fazzi B,
    3. Coluccini M,
    4. et al
    . Cerebral visual impairment in preterm infants with periventricular leukomalacia. Pediatr Neurol 1997;17:331–38
    CrossRefPubMedWeb of ScienceGoogle Scholar
  3. 3.↵
    1. Lanzi G,
    2. Fazzi E,
    3. Uggetti C,
    4. et al
    . Cerebral visual impairment in periventricular leukomalacia. Neuropediatrics 1998;29:145–50
    CrossRefPubMedWeb of ScienceGoogle Scholar
  4. 4.↵
    1. Uggetti C,
    2. Egitto MG,
    3. Fazzi E,
    4. et al
    . Cerebral visual impairment in periventricular leukomalacia: MR correlation. AJNR Am J Neuroradiol 1996;17:979–85
    AbstractGoogle Scholar
  5. 5.↵
    1. Matsuba CA,
    2. Jan JE
    . Long-term outcome of children with cortical visual impairment. Dev Med Child Neurol 2006;48:508–12
    CrossRefPubMedGoogle Scholar
  6. 6.↵
    1. Volpe JJ
    . Neurology of the Newborn. Philadelphia: Saunders; 2008
    Google Scholar
  7. 7.↵
    1. Inder TE,
    2. Anderson NJ,
    3. Spencer C,
    4. et al
    . White matter injury in the premature infant: a comparison between serial cranial sonographic and MR findings at term. AJNR Am J Neuroradiol 2003;24:805–09
    Abstract/FREE Full TextGoogle Scholar
  8. 8.↵
    1. Miller SP,
    2. Cozzio CC,
    3. Goldstein RB,
    4. et al
    . Comparing the diagnosis of white matter injury in premature newborns with serial MR imaging and transfontanel ultrasonography findings. AJNR Am J Neuroradiol 2003;24:1661–69
    Abstract/FREE Full TextGoogle Scholar
  9. 9.↵
    1. Mirabella G,
    2. Kjaer PK,
    3. Norcia AM,
    4. et al
    . Visual development in very low birth weight infants. Pediatr Res 2006;60:435–39
    CrossRefPubMedWeb of ScienceGoogle Scholar
  10. 10.↵
    1. Mukherjee P,
    2. McKinstry RC
    . Diffusion tensor imaging and tractography of human brain development. Neuroimaging Clin N Am 2006;16:19–43, vii
    CrossRefPubMedWeb of ScienceGoogle Scholar
  11. 11.↵
    1. Huppi PS,
    2. Dubois J
    . Diffusion tensor imaging of brain development. Semin Fetal Neonatal Med 2006;11:489–97
    CrossRefPubMedWeb of ScienceGoogle Scholar
  12. 12.↵
    1. Berman JI,
    2. Glass HC,
    3. Miller SP,
    4. et al
    . Quantitative fiber tracking analysis of the optic radiation correlated with visual performance in premature newborns. AJNR Am J Neuroradiol 2009;30:120–24
    Abstract/FREE Full TextGoogle Scholar
  13. 13.↵
    1. Norcia AM,
    2. Tyler CW
    . Spatial frequency sweep VEP: visual acuity during the first year of life. Vision Res 1985;25:1399–408
    CrossRefPubMedWeb of ScienceGoogle Scholar
  14. 14.↵
    1. Norcia AM,
    2. Garcia H,
    3. Humphry R,
    4. et al
    . Anomalous motion VEPs in infants and in infantile esotropia. Invest Ophthalmol Vis Sci 1991;32:436–39
    Abstract/FREE Full TextGoogle Scholar
  15. 15.↵
    1. Skoczenski AM,
    2. Norcia AM
    . Development of VEP Vernier acuity and grating acuity in human infants. Invest Ophthalmol Vis Sci 1999;40:2411–17
    Abstract/FREE Full TextGoogle Scholar
  16. 16.↵
    1. Skoczenski AM,
    2. Good WV
    . Vernier acuity is selectively affected in infants and children with cortical visual impairment. Dev Med Child Neurol 2004;46:526–32
    PubMedWeb of ScienceGoogle Scholar
  17. 17.↵
    1. Bassi L,
    2. Ricci D,
    3. Volzone A,
    4. et al
    . Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age. Brain 2008;131:573–82
    Abstract/FREE Full TextGoogle Scholar
  18. 18.↵
    1. Dumoulin CL,
    2. Rohling KW,
    3. Piel JE,
    4. et al
    . Magnetic resonance imaging compatible neonate incubator. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering 2002;15:117–28
    CrossRefGoogle Scholar
  19. 19.↵
    1. Miller SP,
    2. Ferriero DM,
    3. Leonard C,
    4. et al
    . Early brain injury in premature newborns detected with magnetic resonance imaging is associated with adverse early neurodevelopmental outcome. J Pediatr 2005;147:609–16
    CrossRefPubMedWeb of ScienceGoogle Scholar
  20. 20.↵
    1. Woods RP,
    2. Grafton ST,
    3. Holmes CJ,
    4. et al
    . Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assist Tomogr 1998;22:139–52
    CrossRefPubMedWeb of ScienceGoogle Scholar
  21. 21.↵
    1. Woods RP,
    2. Grafton ST,
    3. Watson JD,
    4. et al
    . Automated image registration: II. Intersubject validation of linear and nonlinear models. J Comput Assist Tomogr 1998;22:153–65
    CrossRefPubMedWeb of ScienceGoogle Scholar
  22. 22.↵
    1. Basser PJ,
    2. Pierpaoli C
    . Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 1996;111:209–19
    CrossRefPubMedWeb of ScienceGoogle Scholar
  23. 23.↵
    1. Miller SP,
    2. Vigneron DB,
    3. Henry RG,
    4. et al
    . Serial quantitative diffusion tensor MRI of the premature brain: development in newborns with and without injury. J Magn Reson Imaging 2002;16:621–32
    CrossRefPubMedWeb of ScienceGoogle Scholar
  24. 24.↵
    1. Norcia AM,
    2. Tyler CW,
    3. Hamer RD,
    4. et al
    . Measurement of spatial contrast sensitivity with the swept contrast VEP. Vision Res 1989;29:627–37
    CrossRefPubMedWeb of ScienceGoogle Scholar
  25. 25.↵
    1. Odom JV,
    2. Bach M,
    3. Barber C,
    4. et al
    . Visual evoked potentials standard (2004). Doc Ophthalmol 2004;108:115–23
    CrossRefPubMedWeb of ScienceGoogle Scholar
  26. 26.↵
    1. Bayley N
    . Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III) Manual. San Antonio, Texas: PsychCorp (Harcourt Assessment), 2006
    Google Scholar
  27. 27.↵
    1. Zeger SL,
    2. Liang KY,
    3. Albert PS
    . Models for longitudinal data: a generalized estimating equation approach. Biometrics 1988;44:1049–60
    CrossRefPubMedWeb of ScienceGoogle Scholar
  28. 28.↵
    1. Beaulieu C
    . The basis of anisotropic water diffusion in the nervous system: a technical review. NMR Biomed 2002;15:435–55
    CrossRefPubMedWeb of ScienceGoogle Scholar
  29. 29.↵
    1. Song SK,
    2. Sun SW,
    3. Ju WK,
    4. et al
    . Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 2003;20:1714–22
    CrossRefPubMedWeb of ScienceGoogle Scholar
  30. 30.↵
    1. Prayer D,
    2. Barkovich AJ,
    3. Kirschner DA,
    4. et al
    . Visualization of nonstructural changes in early white matter development on diffusion-weighted MR images: evidence supporting premyelination anisotropy. AJNR Am J Neuroradiol 2001;22:1572–76
    Abstract/FREE Full TextGoogle Scholar
  31. 31.↵
    1. Drobyshevsky A,
    2. Song SK,
    3. Gamkrelidze G,
    4. et al
    . Developmental changes in diffusion anisotropy coincide with immature oligodendrocyte progression and maturation of compound action potential. J Neurosci 2005;25:5988–97
    Abstract/FREE Full TextGoogle Scholar
  32. 32.↵
    1. Partridge SC,
    2. Mukherjee P,
    3. Berman JI,
    4. et al
    . Tractography-based quantitation of diffusion tensor imaging parameters in white matter tracts of preterm newborns. J Magn Reson Imaging 2005;22:467–74
    CrossRefPubMedWeb of ScienceGoogle Scholar
  33. 33.↵
    1. Partridge SC,
    2. Mukherjee P,
    3. Henry RG,
    4. et al
    . Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns. Neuroimage 2004;22:1302–14
    CrossRefPubMedWeb of ScienceGoogle Scholar
  34. 34.↵
    1. Berman JI,
    2. Mukherjee P,
    3. Partridge SC,
    4. et al
    . Quantitative diffusion tensor MRI fiber tractography of sensorimotor white matter development in premature infants. Neuroimage 2005;27:862–71
    CrossRefPubMedWeb of ScienceGoogle Scholar
  35. 35.↵
    1. Moskowitz A,
    2. Sokol S
    . Developmental changes in the human visual system as reflected by the latency of the pattern reversal VEP. Electroencephalogr Clin Neurophysiol 1983;56:1–15
    CrossRefPubMedWeb of ScienceGoogle Scholar
  36. 36.↵
    1. Dubois J,
    2. Dehaene-Lambertz G,
    3. Soares C,
    4. et al
    . Microstructural correlates of infant functional development: example of the visual pathways. J Neurosci 2008;28:1943–48
    Abstract/FREE Full TextGoogle Scholar
  37. 37.↵
    1. Counsell SJ,
    2. Edwards AD,
    3. Chew AT,
    4. et al
    . Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm. Brain 2008;131:3201–08
    Abstract/FREE Full TextGoogle Scholar
  38. 38.↵
    1. Drobyshevsky A,
    2. Bregman J,
    3. Storey P,
    4. et al
    . Serial diffusion tensor imaging detects white matter changes that correlate with motor outcome in premature infants. Dev Neurosci 2007;29:289–301
    CrossRefPubMedWeb of ScienceGoogle Scholar
  39. 39.↵
    1. Rose J,
    2. Mirmiran M,
    3. Butler EE,
    4. et al
    . Neonatal microstructural development of the internal capsule on diffusion tensor imaging correlates with severity of gait and motor deficits. Dev Med Child Neurol 2007;49:745–50
    PubMedWeb of ScienceGoogle Scholar
  40. 40.↵
    1. Arzoumanian Y,
    2. Mirmiran M,
    3. Barnes PD,
    4. et al
    . Diffusion tensor brain imaging findings at term-equivalent age may predict neurologic abnormalities in low birth weight preterm infants. AJNR Am J Neuroradiol 2003;24:1646–53
    Abstract/FREE Full TextGoogle Scholar
  41. 41.↵
    1. Krishnan ML,
    2. Dyet LE,
    3. Boardman JP,
    4. et al
    . Relationship between white matter apparent diffusion coefficients in preterm infants at term-equivalent age and developmental outcome at 2 years. Pediatrics 2007;120:e604–09
    Abstract/FREE Full TextGoogle Scholar
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 31 (8)
American Journal of Neuroradiology
Vol. 31, Issue 8
1 Sep 2010
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article
Cite this article
0 Responses
Respond to this article
Share
Bookmark this article
Quantitative Fiber Tracking of the Optic Radiation Is Correlated with Visual-Evoked Potential Amplitude in Preterm Infants
H.C. Glass, J.I. Berman, A.M. Norcia, E.E. Rogers, R.G. Henry, C. Hou, A.J. Barkovich, W.V. Good
American Journal of Neuroradiology Sep 2010, 31 (8) 1424-1429; DOI: 10.3174/ajnr.A2110
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
Purchase

Jump to section

  • Article
    • Abstract
    • Abbreviations
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Damage to the Immature Optic Radiation Causes Severe Reduction of the Retinal Nerve Fiber Layer, Resulting in Predictable Visual Field Defects
  • Optimal Timing of Cerebral MRI in Preterm Infants to Predict Long-Term Neurodevelopmental Outcome: A Systematic Review
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Clinical SVR of Fetal Brain MRI
  • Comparing MRI Perfusion in Pediatric Brain Tumors
  • Sodium MRI in Pediatric Brain Tumors
Show more PEDIATRIC NEUROIMAGING

Similar Articles

  • Optimal Timing of Cerebral MRI in Preterm Infants to Predict Long-Term Neurodevelopmental Outcome: A Systematic Review
  • XII Symposium Neuroradiologicum. Washington, D.C., October 10-16, 1983.
See more
Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire
Email this Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Quantitative Fiber Tracking of the Optic Radiation Is Correlated with Visual-Evoked Potential Amplitude in Preterm Infants
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
H.C. Glass, J.I. Berman, A.M. Norcia, E.E. Rogers, R.G. Henry, C. Hou, A.J. Barkovich, W.V. Good
Quantitative Fiber Tracking of the Optic Radiation Is Correlated with Visual-Evoked Potential Amplitude in Preterm Infants
American Journal of Neuroradiology Sep 2010, 31 (8) 1424-1429; DOI: 10.3174/ajnr.A2110

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

We use cookies on this site to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies.