This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
ABSTRACT
BACKGROUND AND PURPOSE: Identifying amyloid-beta (Aβ)–positive patients is essential for Alzheimer’s disease (AD) clinical trials and disease-modifying treatments but currently requires PET or cerebrospinal fluid sampling. Previous MRI-based deep learning models, using only T1-weighted (T1w) images, have shown moderate performance.
MATERIALS AND METHODS: Multi-contrast MRI and PET-based quantitative Aβ deposition were retrospectively obtained from three public datasets: ADNI, OASIS3, and A4. Aβ positivity was defined using each dataset’s recommended centiloid threshold. Two EfficientNet models were trained to predict amyloid positivity: one using only T1w images and another incorporating both T1w and T2-FLAIR. Model performance was assessed using an internal held-out test set, evaluating AUC, accuracy, sensitivity, and specificity. External validation was conducted using an independent cohort from Stanford Alzheimer’s Disease Research Center. DeLong’s and McNemar’s tests were used to compare AUC and accuracy, respectively.
RESULTS: A total of 4,056 exams (mean [SD] age: 71.6 [6.3] years; 55% female; 55% amyloid-positive) were used for network development, and 149 exams were used for external testing (mean [SD] age: 72.1 [9.6] years; 58% female; 56% amyloid-positive). The multi-contrast model outperformed the single-modality model in the internal held-out test set (AUC: 0.67, 95% CI: 0.65–0.70, P < 0.001; accuracy: 0.63, 95% CI: 0.62–0.65, P < 0.001) compared to the T1w-only model (AUC: 0.61; accuracy: 0.59). Among cognitive subgroups, the highest performance (AUC: 0.71) was observed in mild cognitive impairment. The multi-contrast model also demonstrated consistent performance in the external test set (AUC: 0.65, 95% CI: 0.60–0.71, P = 0.014; accuracy: 0.62, 95% CI: 0.58– 0.65, P < 0.001).
CONCLUSIONS: The use of multi-contrast MRI, specifically incorporating T2-FLAIR in addition to T1w images, significantly improved the predictive accuracy of PET-determined amyloid status from MRI scans using a deep learning approach.
ABBREVIATIONS: Aβ= amyloid-beta; AD= Alzheimer’s disease; AUC= area under the receiver operating characteristic curve; CN= cognitively normal; MCI= mild cognitive impairment; T1w = T1-wegithed; T2-FLAIR = T2-weighted fluid attenuated inversion recovery; FBP=18F-florbetapir; FBB=18F-florbetaben; SUVR= standard uptake value ratio
Footnotes
This study was funded by NIH R56 AG071558, NIH P30 AG066515, NIH U24 AG074855, NIH K99 AG071837, and Alzheimer’s Association AARFD-21-849349. The funders played no role in study design, data collection, analysis and interpretation of data, or the writing of this manuscript. Dr. Greg Zaharchuk reported receiving royalties from Cambridge University Press; travel support and honoraria for lectures from Biogen, Bracco; various patents; equity in Subtle Medical. Dr. Elizabeth Mormino has been a paid consultant for Roche, Genentech, Eli Lilly, and Neurotrack. The other authors declare no completing interests.
- © 2025 by American Journal of Neuroradiology