Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleBRAIN TUMOR IMAGING

Cognitive Control Network and Language Reorganization in Patients with Brain Tumors

Luca Pasquini, Antonio Napolitano, Leonardo Spitoni, Maurizio Schmid, Francesco Dellepiane, Mehrnaz Jenabi, Kyung Peck and Andrei Holodny
American Journal of Neuroradiology May 2025, DOI: https://doi.org/10.3174/ajnr.A8638
Luca Pasquini
aFrom the Neuroradiology Service (L.P.), Radiology Department, Yale New Haven Hospital, Yale Medical School, New Haven, Connecticut
bNeuroradiology Service (L.P., M.J., A.H.), Radiology Department, Memorial Sloan Kettering Cancer Center, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Luca Pasquini
Antonio Napolitano
cMedical Physics Department (A.N., L.S.), Bambino Gesù Children’s Hospital, Rome, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Antonio Napolitano
Leonardo Spitoni
cMedical Physics Department (A.N., L.S.), Bambino Gesù Children’s Hospital, Rome, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maurizio Schmid
dDepartment of Engineering (M.S.), University Roma Tre, Rome, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Francesco Dellepiane
eNeuroradiology Service (F.D.), Radiology Department, Bambino Gesù Children’s Hospital, Rome, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mehrnaz Jenabi
bNeuroradiology Service (L.P., M.J., A.H.), Radiology Department, Memorial Sloan Kettering Cancer Center, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Mehrnaz Jenabi
Kyung Peck
fDepartment of Medical Physics (K.P.), Memorial Sloan Kettering Cancer Center, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kyung Peck
Andrei Holodny
bNeuroradiology Service (L.P., M.J., A.H.), Radiology Department, Memorial Sloan Kettering Cancer Center, New York, New York
gDepartment of Radiology (A.H.), Weill Medical College of Cornell University, New York, New York
hBrain Tumor Center (A.H.), Memorial Sloan Kettering Cancer Center, New York, New York
iDepartment of Neuroscience (A.H.), Weill Cornell Graduate School of the Medical Sciences, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Andrei Holodny
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Briganti C,
    2. Sestieri C,
    3. Mattei PA, et al
    . Reorganization of functional connectivity of the language network in patients with brain gliomas. AJNR Am J Neuroradiol 2012;33:1983–90 doi:10.3174/ajnr.A3064 pmid:22555573
    Abstract/FREE Full Text
  2. 2.↵
    1. Pasquini L,
    2. Di Napoli A,
    3. Rossi-Espagnet MC, et al
    . Understanding language reorganization with neuroimaging: how language adapts to different focal lesions. insights into clinical applications. Front Hum Neurosci 2022;16:747215 doi:10.3389/fnhum.2022.747215 pmid:35250510
    CrossRefPubMed
  3. 3.↵
    1. Pasquini L,
    2. Yildirim O,
    3. Silveira P, et al
    . Effect of tumor genetics, pathology, and location on fMRI of language reorganization in brain tumor patients. Eur Radiology 2023;33:6069–78 doi:10.1007/s00330-023-09610-3 pmid:37074422
    CrossRefPubMed
  4. 4.↵
    1. Pasquini L,
    2. Jenabi M,
    3. Yildirim O, et al
    . Brain functional connectivity in low- and high-grade gliomas: differences in network dynamics associated with tumor grade and location. Cancers (Basel) 2022;14:3327 doi:10.3390/cancers14143327 pmid:35884387
    CrossRefPubMed
  5. 5.↵
    1. Pasquini L,
    2. Peck KK,
    3. Tao A, et al
    . Longitudinal evaluation of brain plasticity in low-grade gliomas: fMRI and graph-theory provide insights on language reorganization. Cancers (Basel) 2023;15:836 doi:10.3390/cancers15030836 pmid:36765795
    CrossRefPubMed
  6. 6.↵
    1. Pasquini L,
    2. Tao A,
    3. Del Ferraro G, et al
    . Association of lack of speech arrest during cortical stimulation with interhemispheric reorganization of the functional language network in patients with brain tumors. AJR Am J Roentgenol 2023;221:806–16 doi:10.2214/AJR.23.29434 pmid:37377358
    CrossRefPubMed
  7. 7.↵
    1. Kinno R,
    2. Ohta S,
    3. Muragaki Y, et al
    . Differential reorganization of three syntax-related networks induced by a left frontal glioma. Brain 2014;137:1193–212 doi:10.1093/brain/awu013 pmid:24519977
    CrossRefPubMed
  8. 8.↵
    1. Isaacs KL,
    2. Barr WB,
    3. Nelson PK, et al
    . Degree of handedness and cerebral dominance. Neurology 2006;66:1855–58 doi:10.1212/01.wnl.0000219623.28769.74 pmid:16801650
    CrossRefPubMed
  9. 9.↵
    1. Ng S,
    2. Valdes PA,
    3. Moritz-Gasser S, et al
    . Intraoperative functional remapping unveils evolving patterns of cortical plasticity. Brain 2023;146:3088–100 doi:10.1093/brain/awad116 pmid:37029961
    CrossRefPubMed
  10. 10.↵
    1. Pasquini L,
    2. Jenabi M,
    3. Peck KK, et al
    . Language reorganization in patients with left-hemispheric gliomas is associated with increased cortical volume in language-related areas and in the default mode network. Cortex 2022;157:245–55 doi:10.1016/j.cortex.2022.09.014 pmid:36356409
    CrossRefPubMed
  11. 11.↵
    1. Quinones A,
    2. Jenabi M,
    3. Pasquini L, et al
    . Longitudinal functional MRI demonstrates translocation of language function in patients with brain tumors. J Neurosurg 2023;139:29–37 doi:10.3171/2022.10.JNS221212 pmid:36433876
    CrossRefPubMed
  12. 12.↵
    1. Desmurget M,
    2. Bonnetblanc F,
    3. Duffau H
    . Contrasting acute and slow-growing lesions: a new door to brain plasticity. Brain 2007;130:898–914 doi:10.1093/brain/awl300 pmid:17121742
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Holodny AI,
    2. Schulder M,
    3. Ybasco A, et al
    . Translocation of Broca’s area to the contralateral hemisphere as the result of the growth of a left inferior frontal glioma. J Comput Assist Tomogr 2002;26:941–43 doi:10.1097/00004728-200211000-00014 pmid:12488739
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Petrovich NM,
    2. Holodny AI,
    3. Brennan CW, et al
    . Isolated translocation of Wernicke’s area to the right hemisphere in a 62-year-man with a temporo-parietal glioma. AJNR Am J Neuroradiol 2004;25:130–33
    Abstract/FREE Full Text
  15. 15.↵
    1. Li Q,
    2. Dong JW,
    3. Ferraro G. D, et al
    . Functional translocation of Broca’s area in a low-grade left frontal glioma: graph theory reveals the novel, adaptive network connectivity. Front Neurol 2019;10:702–06 doi:10.3389/fneur.2019.00702 pmid:31333562
    CrossRefPubMed
  16. 16.↵
    1. Gębska-Kośla K,
    2. Bryszewski B,
    3. Jaskólski DJ, et al
    . Reorganization of language centers in patients with brain tumors located in eloquent speech areas–A pre- and postoperative preliminary fMRI study. Neurol Neurochir Pol 2017;51:403–10 doi:10.1016/j.pjnns.2017.07.010 pmid:28780063
    CrossRefPubMed
  17. 17.↵
    1. Pasquini L,
    2. Jenabi M,
    3. Graham M, et al
    . Tumors affect the metabolic connectivity of the human brain measured by [18F]FDG PET. Clin Nucl Med 2024;49:822–29 doi:10.1097/RLU.0000000000005227 pmid:38693648
    CrossRefPubMed
  18. 18.↵
    1. Cole MW,
    2. Schneider W
    . The cognitive control network: integrated cortical regions with dissociable functions. Neuroimage 2007;37:343–60 doi:10.1016/j.neuroimage.2007.03.071 pmid:17553704
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Silvestri E,
    2. Moretto M,
    3. Facchini S, et al
    . Widespread cortical functional disconnection in gliomas: an individual network mapping approach. Brain Commun 2022;4:fcac082–14 doi:10.1093/braincomms/fcac082 pmid:35474856
    CrossRefPubMed
  20. 20.↵
    1. Ovsepian SV
    . The dark matter of the brain. Brain Struct Funct 2019;224:973–83 doi:10.1007/s00429-019-01835-7 pmid:30659350
    CrossRefPubMed
  21. 21.↵
    1. Pasquini L,
    2. Peck KK,
    3. Jenabi M, et al
    . Functional MRI in neuro-oncology: state of the art and future directions. Radiology 2023;308:e222028 doi:10.1148/radiol.222028 pmid:37668519
    CrossRefPubMed
  22. 22.↵
    1. Oldfield RC
    . The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971;9:97–113 doi:10.1016/0028-3932(71)90067-4 pmid:5146491
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Nugent AC,
    2. Thomas AG,
    3. Mahoney M, et al
    . The NIMH intramural healthy volunteer dataset: A comprehensive MEG, MRI, and behavioral resource. Sci Data 2022;9:518 doi:10.1038/s41597-022-01623-9 pmid:36008415
    CrossRefPubMed
  24. 24.↵
    1. Spreng RN,
    2. Setton R,
    3. Alter U, et al
    . Neurocognitive aging data release with behavioral, structural and multi-echo functional MRI measures. Sci Data 2022;9:119–113 doi:10.1038/s41597-022-01231-7 pmid:35351925
    CrossRefPubMed
  25. 25.↵
    1. Kevin F,
    2. Ivan M,
    3. Keith AB
    . Cognitive Control Theoretic Mechanisms of Real-time fMRI-Guided Neuromodulation (CTM). OpenNeuro 2021 doi:10.18112/openneuro.ds003831.v1.0.0
    CrossRef
  26. 26.↵
    1. Shahrokhi M,
    2. Asuncion RMD
    . Neurologic exam. In: StatPearls; Treasure Island (FL): StatPearls Publishing; 2022
  27. 27.↵
    1. Fedorov A,
    2. Beichel R,
    3. Kalpathy-Cramer J, et al
    . 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 2012;30:1323–41 doi:10.1016/j.MRI.2012.05.001 pmid:22770690
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Rolls ET,
    2. Huang CC,
    3. Lin CP, et al
    . Automated anatomical labelling atlas 3. Neuroimage 2020;206:116189 doi:10.1016/j.neuroimage.2019.116189 pmid:31521825
    CrossRefPubMed
  29. 29.↵
    1. Cox RW
    . AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 1996;29:162–73 doi:10.1006/cbmr.1996.0014 pmid:8812068
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Bandettini PA,
    2. Jesmanowicz A,
    3. Wong EC, et al
    . Processing strategies for time‐course data sets in functional MRI of the human brain. Magn Reson Med 1993;30:161–73 doi:10.1002/mrm.1910300204 pmid:8366797
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Fernández G,
    2. Specht K,
    3. Weis S, et al
    . Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI. Neurology 2003;60:969–75 doi:10.1212/01.wnl.0000049934.34209.2e pmid:12654961
    Abstract/FREE Full Text
  32. 32.↵
    1. Seghier ML
    . Laterality index in functional MRI: methodological issues. Magn Reson Imaging 2008;26:594–601 doi:10.1016/j.MRI.2007.10.010 pmid:18158224
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Cho NS,
    2. Peck KK,
    3. Zhang Z, et al
    . Paradoxical activation in the cerebellum during language fMRI in patients with brain tumors: possible explanations based on neurovascular uncoupling and functional reorganization. Cerebellum 2018;17:286–93 doi:10.1007/s12311-017-0902-5 pmid:29196975
    CrossRefPubMed
  34. 34.↵
    1. Smith SM,
    2. Jenkinson M,
    3. Woolrich MW, et al
    . Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004;23 Suppl 1:S208–19 doi:10.1016/j.neuroimage.2004.07.051 pmid:15501092
    CrossRefPubMed
  35. 35.↵
    1. Wang L,
    2. Chen D,
    3. Yang X, et al
    . Group independent component analysis and functional MRI examination of changes in language areas associated with brain tumors at different locations. PLoS One 2013;8:e59657–10 doi:10.1371/journal.pone.0059657 pmid:23555736
    CrossRefPubMed
  36. 36.↵
    1. Du Y,
    2. Fan Y
    . Group information guided ICA for fMRI data analysis. Neuroimage 2013;69:157–97 doi:10.1016/j.neuroimage.2012.11.008 pmid:23194820
    CrossRefPubMed
  37. 37.↵
    1. Du Y,
    2. Lin D,
    3. Yu Q, et al
    . Comparison of IVA and GIG-ICA in brain functional network estimation using fMRI data. Front Neurosci 2017;11:267 doi:10.3389/fnins.2017.00267 pmid:28579940
    CrossRefPubMed
  38. 38.↵
    1. Langlois D,
    2. Chartier S,
    3. Gosselin D
    . An introduction to independent component analysis: infoMax and FastICA algorithms. TQMP 2010;6:31–38 doi:10.20982/tqmp.06.1.p031
    CrossRef
  39. 39.↵
    1. Himberg J,
    2. Hyvärinen A,
    3. Esposito F
    . Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 2004;22:1214–22 doi:10.1016/j.neuroimage.2004.03.027 pmid:15219593
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Du Y,
    2. Fu Z,
    3. Sui J
    ; Alzheimer’s Disease Neuroimaging Initiative, et al. NeuroMark: an automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders. Neuroimage Clin 2020;28:102375 doi:10.1016/j.nicl.2020.102375 pmid:32961402
    CrossRefPubMed
  41. 41.↵
    1. Uddin LQ,
    2. Yeo BTT,
    3. Spreng RN
    . Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topogr 2019;32:926–42 doi:10.1007/s10548-019-00744-6 pmid:31707621
    CrossRefPubMed
  42. 42.↵
    1. Chou EP,
    2. Hsu SM
    . Cosine similarity as a sample size-free measure to quantify phase clustering within a single neurophysiological signal. J Neurosci Methods 2018;295:111–20 doi:10.1016/j.jneumeth.2017.12.007 pmid:29247676
    CrossRefPubMed
  43. 43.↵
    1. Eelbode T,
    2. Bertels J,
    3. Berman M, et al
    . Optimization for medical image segmentation: theory and practice when evaluating with dice score or Jaccard index. IEEE Trans Med Imaging 2020;39:3679–90 doi:10.1109/TMI.2020.3002417 pmid:32746113
    CrossRefPubMed
  44. 44.↵
    1. Rubner Y,
    2. Tomasi C,
    3. Guibas LJ
    . A metric for distributions with applications to image databases. In: IEEE International Conference on Computer Vision; 1998
  45. 45.↵
    1. Wilson DJ
    . The harmonic mean p-value for combining dependent tests. Proc Natl Acad Sci U S A 2019;116:1195–200 doi:10.1073/pnas.1814092116 pmid:30610179
    Abstract/FREE Full Text
  46. 46.↵
    1. Yuan B,
    2. Xie H,
    3. Gong F, et al
    . Dynamic network reorganization underlying neuroplasticity: the deficits-severity-related language network dynamics in patients with left hemispheric gliomas involving language network. Cereb Cortex 2023;33:8273–85 doi:10.1093/cercor/bhad113 pmid:37005067
    CrossRefPubMed
  47. 47.↵
    1. Rivera-Rivera PA,
    2. Rios-Lago M,
    3. Sanchez-Casarrubios S, et al
    . Cortical plasticity catalyzed by prehabilitation enables extensive resection of brain tumors in eloquent areas. J Neurosurg 2017;126:1323–33 doi:10.3171/2016.2.JNS152485 pmid:27203145
    CrossRefPubMed
  48. 48.↵
    1. Boccuni L,
    2. Abellaneda-Pérez K,
    3. Martín-Fernández J, et al
    . Neuromodulation-induced prehabilitation to leverage neuroplasticity before brain tumor surgery: a single-cohort feasibility trial protocol. Front Neurol 2023;14:1243857 doi:10.3389/fneur.2023.1243857 pmid:37849833
    CrossRefPubMed
  49. 49.↵
    1. Botvinick MM,
    2. Carter CS,
    3. Braver TS, et al
    . Conflict monitoring and cognitive control. Psychol Rev 2001;108:624–52 doi:10.1037/0033-295x.108.3.624 pmid:11488380
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. Hsu NS,
    2. Novick JM
    . Dynamic engagement of cognitive control modulates recovery from misinterpretation during real-time language processing. Psychol Sci 2016;27:572–82 doi:10.1177/0956797615625223 pmid:26957521
    CrossRefPubMed
  51. 51.↵
    1. Bourguignon NJ,
    2. Gracco VL
    . A dual architecture for the cognitive control of language: evidence from functional imaging and language production. Neuroimage 2019;192:26–37 doi:10.1016/j.neuroimage.2019.02.043 pmid:30831311
    CrossRefPubMed
  52. 52.↵
    1. Brownsett SLE,
    2. Warren JE,
    3. Geranmayeh F, et al
    . Cognitive control and its impact on recovery from aphasic stroke. Brain 2014;137:242–54 doi:10.1093/brain/awt289 pmid:24163248
    CrossRefPubMedWeb of Science
  53. 53.↵
    1. Radman N,
    2. Mouthon M,
    3. Di Pietro M, et al
    . The role of the cognitive control system in recovery from bilingual aphasia: a multiple single-case fMRI study. Neural Plast 2016;2016:8797086 doi:10.1155/2016/8797086 pmid:27965899
    CrossRefPubMed
  54. 54.↵
    1. Erb J,
    2. Obleser J
    . Upregulation of cognitive control networks in older adults’ speech comprehension. Front Syst Neurosci 2013;7:116–13 doi:10.3389/fnsys.2013.00116 pmid:24399939
    CrossRefPubMed
  55. 55.↵
    1. Liu Y,
    2. Hu G,
    3. Yu Y, et al
    . Structural and functional reorganization within cognitive control network associated with protection of executive function in patients with unilateral frontal gliomas. Front Oncol 2020;10:794–12 doi:10.3389/fonc.2020.00794 pmid:32528887
    CrossRefPubMed
  56. 56.↵
    1. Draganski B,
    2. Gaser C,
    3. Busch V, et al
    . Changes in grey matter induced by training. Nature 2004;427:311–12 doi:10.1038/427311a pmid:14737157
    CrossRefPubMedWeb of Science
  57. 57.↵
    1. Duffau H
    . Repeated awake surgical resection(s) for recurrent diffuse low-grade gliomas: why, when, and how to reoperate? Front Oncol 2022;12:947933–39 doi:10.3389/fonc.2022.947933 pmid:35865482
    CrossRefPubMed
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Cognitive Control Network and Language Reorganization in Patients with Brain Tumors
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Luca Pasquini, Antonio Napolitano, Leonardo Spitoni, Maurizio Schmid, Francesco Dellepiane, Mehrnaz Jenabi, Kyung Peck, Andrei Holodny
Cognitive Control Network and Language Reorganization in Patients with Brain Tumors
American Journal of Neuroradiology May 2025, DOI: 10.3174/ajnr.A8638

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Cognitive Control in Tumor Language Plasticity
Luca Pasquini, Antonio Napolitano, Leonardo Spitoni, Maurizio Schmid, Francesco Dellepiane, Mehrnaz Jenabi, Kyung Peck, Andrei Holodny
American Journal of Neuroradiology May 2025, DOI: 10.3174/ajnr.A8638
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Graphical Abstract
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Temporal Evolution of Vestibular schwannoma
  • CE MRI for Brain Metastasis Detection
Show more Brain Tumor Imaging

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire