Skip to main content
Advertisement
  • Main menu
  • User menu
  • Search
  • English ▼
    • English
    • Afrikaans
    • Albanian
    • Amharic
    • Arabic
    • Armenian
    • Azerbaijani
    • Basque
    • Belarusian
    • Bengali
    • Bosnian
    • Bulgarian
    • Catalan
    • Cebuano
    • Chichewa
    • Chinese (Simplified)
    • Chinese (Traditional)
    • Corsican
    • Croatian
    • Czech
    • Danish
    • Dutch
    • Esperanto
    • Estonian
    • Filipino
    • Finnish
    • French
    • Frisian
    • Galician
    • Georgian
    • German
    • Greek
    • Gujarati
    • Haitian Creole
    • Hausa
    • Hawaiian
    • Hebrew
    • Hindi
    • Hmong
    • Hungarian
    • Icelandic
    • Igbo
    • Indonesian
    • Irish
    • Italian
    • Japanese
    • Javanese
    • Kannada
    • Kazakh
    • Khmer
    • Korean
    • Kurdish (Kurmanji)
    • Kyrgyz
    • Lao
    • Latin
    • Latvian
    • Lithuanian
    • Luxembourgish
    • Macedonian
    • Malagasy
    • Malay
    • Malayalam
    • Maltese
    • Maori
    • Marathi
    • Mongolian
    • Myanmar (Burmese)
    • Nepali
    • Norwegian
    • Pashto
    • Persian
    • Polish
    • Portuguese
    • Punjabi
    • Romanian
    • Russian
    • Samoan
    • Scottish Gaelic
    • Serbian
    • Sesotho
    • Shona
    • Sindhi
    • Sinhala
    • Slovak
    • Slovenian
    • Somali
    • Spanish
    • Sudanese
    • Swahili
    • Swedish
    • Tajik
    • Tamil
    • Telugu
    • Thai
    • Turkish
    • Ukrainian
    • Urdu
    • Uzbek
    • Vietnamese
    • Welsh
    • Xhosa
    • Yiddish
    • Yoruba
    • Zulu

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

English ▼
  • English
  • Afrikaans
  • Albanian
  • Amharic
  • Arabic
  • Armenian
  • Azerbaijani
  • Basque
  • Belarusian
  • Bengali
  • Bosnian
  • Bulgarian
  • Catalan
  • Cebuano
  • Chichewa
  • Chinese (Simplified)
  • Chinese (Traditional)
  • Corsican
  • Croatian
  • Czech
  • Danish
  • Dutch
  • Esperanto
  • Estonian
  • Filipino
  • Finnish
  • French
  • Frisian
  • Galician
  • Georgian
  • German
  • Greek
  • Gujarati
  • Haitian Creole
  • Hausa
  • Hawaiian
  • Hebrew
  • Hindi
  • Hmong
  • Hungarian
  • Icelandic
  • Igbo
  • Indonesian
  • Irish
  • Italian
  • Japanese
  • Javanese
  • Kannada
  • Kazakh
  • Khmer
  • Korean
  • Kurdish (Kurmanji)
  • Kyrgyz
  • Lao
  • Latin
  • Latvian
  • Lithuanian
  • Luxembourgish
  • Macedonian
  • Malagasy
  • Malay
  • Malayalam
  • Maltese
  • Maori
  • Marathi
  • Mongolian
  • Myanmar (Burmese)
  • Nepali
  • Norwegian
  • Pashto
  • Persian
  • Polish
  • Portuguese
  • Punjabi
  • Romanian
  • Russian
  • Samoan
  • Scottish Gaelic
  • Serbian
  • Sesotho
  • Shona
  • Sindhi
  • Sinhala
  • Slovak
  • Slovenian
  • Somali
  • Spanish
  • Sudanese
  • Swahili
  • Swedish
  • Tajik
  • Tamil
  • Telugu
  • Thai
  • Turkish
  • Ukrainian
  • Urdu
  • Uzbek
  • Vietnamese
  • Welsh
  • Xhosa
  • Yiddish
  • Yoruba
  • Zulu
  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates


Improved Turnaround Times | Median time to first decision: 12 days

Research ArticleNEURODEGENERATIVE DISORDER IMAGING

Predicting Post-Operative Side Effects in VIM MRgFUS Based on THalamus Optimized Multi Atlas Segmentation (THOMAS) on White-Matter-Nulled MRI: A Retrospective Study

Sonoko Oshima, Asher Kim, Xiaonan R. Sun, Ziad Rifi, Katy A. Cross, Katherine A. Fu, Noriko Salamon, Benjamin M. Ellingson, Ausaf A. Bari and Jingwen Yao
American Journal of Neuroradiology December 2024, DOI: https://doi.org/10.3174/ajnr.A8448
Sonoko Oshima
aFrom the UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers (S.O., A.K., B.M.E., J.Y.), University of California, Los Angeles, Los Angeles, California
bDepartment of Radiological Sciences (S.O., N.S., B.M.E., J.Y.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Asher Kim
aFrom the UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers (S.O., A.K., B.M.E., J.Y.), University of California, Los Angeles, Los Angeles, California
cDepartment of Bioengineering (A.K., B.M.E., J.Y.), Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Asher Kim
Xiaonan R. Sun
dDepartment of Neurosurgery (X.R.S., Z.R., B.M.E., A.A.B.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ziad Rifi
dDepartment of Neurosurgery (X.R.S., Z.R., B.M.E., A.A.B.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ziad Rifi
Katy A. Cross
eDepartment of Neurology (K.A.C., K.A.F.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Katherine A. Fu
eDepartment of Neurology (K.A.C., K.A.F.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Katherine A. Fu
Noriko Salamon
bDepartment of Radiological Sciences (S.O., N.S., B.M.E., J.Y.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Noriko Salamon
Benjamin M. Ellingson
aFrom the UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers (S.O., A.K., B.M.E., J.Y.), University of California, Los Angeles, Los Angeles, California
bDepartment of Radiological Sciences (S.O., N.S., B.M.E., J.Y.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
cDepartment of Bioengineering (A.K., B.M.E., J.Y.), Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
dDepartment of Neurosurgery (X.R.S., Z.R., B.M.E., A.A.B.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
fDepartment of Psychiatry and Biobehavioral Sciences (B.M.E.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Benjamin M. Ellingson
Ausaf A. Bari
dDepartment of Neurosurgery (X.R.S., Z.R., B.M.E., A.A.B.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jingwen Yao
aFrom the UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers (S.O., A.K., B.M.E., J.Y.), University of California, Los Angeles, Los Angeles, California
bDepartment of Radiological Sciences (S.O., N.S., B.M.E., J.Y.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
cDepartment of Bioengineering (A.K., B.M.E., J.Y.), Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jingwen Yao
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Bruno F,
    2. Catalucci A,
    3. Arrigoni F, et al
    . An experience-based review of HIFU in functional interventional neuroradiology: transcranial MRgFUS thalamotomy for treatment of tremor. Radiol Med 2020;125:877–886 doi:10.1007/s11547-020-01186-y pmid:32266693
    CrossRefPubMedGoogle Scholar
  2. 2.↵
    1. Elias WJ,
    2. Lipsman N,
    3. Ondo WG, et al
    . A Randomized Trial of Focused Ultrasound Thalamotomy for Essential Tremor. N Engl J Med 2016;375:730–739 doi:10.1056/NEJMoa1600159 pmid:27557301
    CrossRefPubMedGoogle Scholar
  3. 3.↵
    1. Jolesz FA
    . MRI-guided focused ultrasound surgery. Annu Rev Med 2009;60:417–430 doi:10.1146/annurev.med.60.041707.170303 pmid:19630579
    CrossRefPubMedGoogle Scholar
  4. 4.↵
    1. Yamamoto K,
    2. Sarica C,
    3. Loh A, et al
    . Magnetic resonance-guided focused ultrasound for the treatment of tremor. Expert Rev Neurother 2022;22:849–861 doi:10.1080/14737175.2022.2147826 pmid:36469578
    CrossRefPubMedGoogle Scholar
  5. 5.↵
    1. Elias WJ,
    2. Huss D,
    3. Voss T, et al
    . A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med 2013;369:640–648 doi:10.1056/NEJMoa1300962 pmid:23944301
    CrossRefPubMedWeb of ScienceGoogle Scholar
  6. 6.↵
    1. Wintermark M,
    2. Druzgal J,
    3. Huss DS, et al
    . Imaging findings in MR imaging-guided focused ultrasound treatment for patients with essential tremor. AJNR Am J Neuroradiol 2014;35:891–896 doi:10.3174/ajnr.A3808 pmid:24371027
    Abstract/FREE Full TextGoogle Scholar
  7. 7.↵
    1. Quadri SA,
    2. Waqas M,
    3. Khan I, et al
    . High-intensity focused ultrasound: past, present, and future in neurosurgery. Neurosurg Focus 2018;44:E16 doi:10.3171/2017.11.FOCUS17610 pmid:29385923
    CrossRefPubMedGoogle Scholar
  8. 8.↵
    1. de Rijk MC,
    2. Breteler MM,
    3. Graveland GA, et al
    . Prevalence of Parkinson’s disease in the elderly: the Rotterdam Study. Neurology 1995;45:2143–2146 doi:10.1212/wnl.45.12.2143 pmid:8848182
    CrossRefPubMedGoogle Scholar
  9. 9.↵
    1. Jochems ACC,
    2. Muñoz Maniega S,
    3. Del CVHM, et al
    . Contribution of white matter hyperintensities to ventricular enlargement in older adults. Neuroimage Clin 2022;34:103019 doi:10.1016/j.nicl.2022.103019 pmid:35490587
    CrossRefPubMedGoogle Scholar
  10. 10.↵
    1. Børretzen MN,
    2. Bjerknes S,
    3. Sæhle T, et al
    . Long-term follow-up of thalamic deep brain stimulation for essential tremor - patient satisfaction and mortality. BMC Neurol 2014;14:120 doi:10.1186/1471-2377-14-120 pmid:24903550
    CrossRefPubMedGoogle Scholar
  11. 11.↵
    1. Peters J,
    2. Maamary J,
    3. Kyle K, et al
    . Outcomes of Focused Ultrasound Thalamotomy in Tremor Syndromes. Mov Disord 2024;39:173–182 doi:10.1002/mds.29658 pmid:37964429
    CrossRefPubMedGoogle Scholar
  12. 12.↵
    1. Obwegeser AA,
    2. Uitti RJ,
    3. Witte RJ, et al
    . Quantitative and qualitative outcome measures after thalamic deep brain stimulation to treat disabling tremors. Neurosurgery 2001;48:274–281; discussion 281–274 doi:10.1227/00006123-200102000-00004 pmid:11220369
    CrossRefPubMedWeb of ScienceGoogle Scholar
  13. 13.↵
    1. Boutet A,
    2. Ranjan M,
    3. Zhong J, et al
    . Focused ultrasound thalamotomy location determines clinical benefits in patients with essential tremor. Brain 2018;141:3405–3414 doi:10.1093/brain/awy278 pmid:30452554
    CrossRefPubMedGoogle Scholar
  14. 14.↵
    1. Bruno F,
    2. Catalucci A,
    3. Varrassi M, et al
    . Comparative evaluation of tractography-based direct targeting and atlas-based indirect targeting of the ventral intermediate (Vim) nucleus in MRgFUS thalamotomy. Sci Rep 2021;11:13538 doi:10.1038/s41598-021-93058-2 pmid:34188190
    CrossRefPubMedGoogle Scholar
  15. 15.↵
    1. Mohammed N,
    2. Patra D,
    3. Nanda A
    . A meta-analysis of outcomes and complications of magnetic resonance-guided focused ultrasound in the treatment of essential tremor. Neurosurg Focus 2018;44:E4 doi:10.3171/2017.11.FOCUS17628 pmid:29385917
    CrossRefPubMedGoogle Scholar
  16. 16.↵
    1. Paff M,
    2. Boutet A,
    3. Germann J, et al
    . Focused Ultrasound Thalamotomy Sensory Side Effects Follow the Thalamic Structural Homunculus. Neurol Clin Pract 2021;11:e497–e503 doi:10.1212/CPJ.0000000000001013 pmid:34484947
    Abstract/FREE Full TextGoogle Scholar
  17. 17.↵
    1. Su JH,
    2. Choi EY,
    3. Tourdias T, et al
    . Improved Vim targeting for focused ultrasound ablation treatment of essential tremor: A probabilistic and patient-specific approach. Hum Brain Mapp 2020;41:4769–4788 doi:10.1002/hbm.25157 pmid:32762005
    CrossRefPubMedGoogle Scholar
  18. 18.↵
    1. Yamamoto K,
    2. Sarica C,
    3. Elias GJB, et al
    . Ipsilateral and axial tremor response to focused ultrasound thalamotomy for essential tremor: clinical outcomes and probabilistic mapping. J Neurol Neurosurg Psychiatry 2022 doi:10.1136/jnnp-2021-328459
    Abstract/FREE Full TextGoogle Scholar
  19. 19.↵
    1. Agrawal M,
    2. Garg K,
    3. Samala R, et al
    . Outcome and Complications of MR Guided Focused Ultrasound for Essential Tremor: A Systematic Review and Meta-Analysis. Front Neurol 2021;12:654711 doi:10.3389/fneur.2021.654711 pmid:34025558
    CrossRefPubMedGoogle Scholar
  20. 20.↵
    1. King NKK,
    2. Krishna V,
    3. Basha D, et al
    . Microelectrode recording findings within the tractography- defined ventral intermediate nucleus. J Neurosurg 2017;126:1669–1675 doi:10.3171/2016.3.JNS151992 pmid:27447439
    CrossRefPubMedGoogle Scholar
  21. 21.↵
    1. Sammartino F,
    2. Krishna V,
    3. King NK, et al
    . Tractography-Based Ventral Intermediate Nucleus Targeting: Novel Methodology and Intraoperative Validation. Mov Disord 2016;31:1217–1225 doi:10.1002/mds.26633 pmid:27214406
    CrossRefPubMedGoogle Scholar
  22. 22.↵
    1. Wakim AA,
    2. Sioda NA,
    3. Zhou JJ, et al
    . Direct targeting of the ventral intermediate nucleus of the thalamus in deep brain stimulation for essential tremor: a prospective study with comparison to a historical cohort. J Neurosurg 2022;136:662–671 doi:10.3171/2021.2.JNS203815 pmid:34560647
    CrossRefPubMedGoogle Scholar
  23. 23.↵
    1. Abosch A,
    2. Yacoub E,
    3. Ugurbil K, et al
    . An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 Tesla. Neurosurgery 2010;67:1745–1756; discussion 1756 doi:10.1227/NEU.0b013e3181f74105 pmid:21107206
    CrossRefPubMedWeb of ScienceGoogle Scholar
  24. 24.↵
    1. Deistung A,
    2. Schäfer A,
    3. Schweser F, et al
    . Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength. Neuroimage 2013;65:299–314 doi:10.1016/j.neuroimage.2012.09.055 pmid:23036448
    CrossRefPubMedGoogle Scholar
  25. 25.↵
    1. Najdenovska E,
    2. Tuleasca C,
    3. Jorge J, et al
    . Comparison of MRI-based automated segmentation methods and functional neurosurgery targeting with direct visualization of the Ventro-intermediate thalamic nucleus at 7T. Sci Rep 2019;9:1119 doi:10.1038/s41598-018-37825-8 pmid:30718634
    CrossRefPubMedGoogle Scholar
  26. 26.↵
    1. Xiao Y,
    2. Zitella LM,
    3. Duchin Y, et al
    . Multimodal 7T Imaging of Thalamic Nuclei for Preclinical Deep Brain Stimulation Applications. Front Neurosci 2016;10:264 doi:10.3389/fnins.2016.00264 pmid:27375422
    CrossRefPubMedGoogle Scholar
  27. 27.↵
    1. Grewal SS,
    2. Middlebrooks EH,
    3. Kaufmann TJ, et al
    . Fast gray matter acquisition T1 inversion recovery MRI to delineate the mammillothalamic tract for preoperative direct targeting of the anterior nucleus of the thalamus for deep brain stimulation in epilepsy. Neurosurg Focus 2018;45:E6 doi:10.3171/2018.4.FOCUS18147 pmid:30064328
    CrossRefPubMedGoogle Scholar
  28. 28.↵
    1. Morishita T,
    2. Higuchi MA,
    3. Kobayashi H, et al
    . A retrospective evaluation of thalamic targeting for tremor deep brain stimulation using high-resolution anatomical imaging with supplementary fiber tractography. J Neurol Sci 2019;398:148–156 doi:10.1016/j.jns.2019.01.025 pmid:30716581
    CrossRefPubMedGoogle Scholar
  29. 29.↵
    1. Neudorfer C,
    2. Kroneberg D,
    3. Al-Fatly B, et al
    . Personalizing Deep Brain Stimulation Using Advanced Imaging Sequences. Ann Neurol 2022;91:613–628 doi:10.1002/ana.26326 pmid:35165921
    CrossRefPubMedGoogle Scholar
  30. 30.↵
    1. Sudhyadhom A,
    2. Haq IU,
    3. Foote KD, et al
    . A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR). Neuroimage 2009;47 Suppl 2:T44–52 doi:10.1016/j.neuroimage.2009.04.018 pmid:19362595
    CrossRefPubMedGoogle Scholar
  31. 31.↵
    1. Su JH,
    2. Thomas FT,
    3. Kasoff WS, et al
    . Thalamus Optimized Multi Atlas Segmentation (THOMAS): fast, fully automated segmentation of thalamic nuclei from structural MRI. Neuroimage 2019;194:272–282 doi:10.1016/j.neuroimage.2019.03.021 pmid:30894331
    CrossRefPubMedGoogle Scholar
  32. 32.↵
    1. Lipsman N,
    2. Mainprize TG,
    3. Schwartz ML, et al
    . Intracranial applications of magnetic resonance-guided focused ultrasound. Neurotherapeutics 2014;11:593–605 doi:10.1007/s13311-014-0281-2 pmid:24850310
    CrossRefPubMedGoogle Scholar
  33. 33.↵
    1. Chen L,
    2. Bouley DM,
    3. Harris BT, et al
    . MRI study of immediate cell viability in focused ultrasound lesions in the rabbit brain. J Magn Reson Imaging 2001;13:23–30 doi:10.1002/1522-2586(200101)13:1<23::AID-JMRI1004>3.0.CO;2-G
    CrossRefPubMedGoogle Scholar
  34. 34.↵
    1. Ghanouni P,
    2. Pauly KB,
    3. Elias WJ, et al
    . Transcranial MRI-Guided Focused Ultrasound: A Review of the Technologic and Neurologic Applications. AJR Am J Roentgenol 2015;205:150–159 doi:10.2214/AJR.14.13632 pmid:26102394
    CrossRefPubMedGoogle Scholar
  35. 35.↵
    1. Ram Z,
    2. Cohen ZR,
    3. Harnof S, et al
    . Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy. Neurosurgery 2006;59:949–955; discussion 955–946 doi:10.1227/01.NEU.0000254439.02736.D8 pmid:17143231
    CrossRefPubMedGoogle Scholar
  36. 36.↵
    1. Tustison NJ,
    2. Cook PA,
    3. Holbrook AJ, et al
    . The ANTsX ecosystem for quantitative biological and medical imaging. Sci Rep 2021;11:9068 doi:10.1038/s41598-021-87564-6 pmid:33907199
    CrossRefPubMedGoogle Scholar
  37. 37.↵
    1. Segar DJ,
    2. Lak AM,
    3. Lee S, et al
    . Lesion location and lesion creation affect outcomes after focused ultrasound thalamotomy. Brain 2021;144:3089–3100 doi:10.1093/brain/awab176 pmid:34750621
    CrossRefPubMedGoogle Scholar
  38. 38.↵
    1. Kapadia AN,
    2. Elias GJB,
    3. Boutet A, et al
    . Multimodal MRI for MRgFUS in essential tremor: post-treatment radiological markers of clinical outcome. J Neurol Neurosurg Psychiatry 2020;91:921–927 doi:10.1136/jnnp-2020-322745 pmid:32651242
    Abstract/FREE Full TextGoogle Scholar
  39. 39.↵
    1. Boutet A,
    2. Loh A,
    3. Chow CT, et al
    . A literature review of magnetic resonance imaging sequence advancements in visualizing functional neurosurgery targets. J Neurosurg 2021;135:1445–1458 doi:10.3171/2020.8.JNS201125 pmid:33770759
    CrossRefPubMedGoogle Scholar
  40. 40.↵
    1. Tourdias T,
    2. Saranathan M,
    3. Levesque IR, et al
    . Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7T. Neuroimage 2014;84:534–545 doi:10.1016/j.neuroimage.2013.08.069 pmid:24018302
    CrossRefPubMedGoogle Scholar
  41. 41.↵
    1. Lehman VT,
    2. Lee KH,
    3. Klassen BT, et al
    . MRI and tractography techniques to localize the ventral intermediate nucleus and dentatorubrothalamic tract for deep brain stimulation and MR-guided focused ultrasound: a narrative review and update. Neurosurg Focus 2020;49:E8 doi:10.3171/2020.4.FOCUS20170 pmid:32610293
    CrossRefPubMedGoogle Scholar
  42. 42.↵
    1. Ranjan M,
    2. Elias GJB,
    3. Boutet A, et al
    . Tractography-based targeting of the ventral intermediate nucleus: accuracy and clinical utility in MRgFUS thalamotomy. J Neurosurg 2019:1–8 doi:10.3171/2019.6.JNS19612 pmid:31561221
    CrossRefPubMedGoogle Scholar
  43. 43.↵
    1. Zhuang J,
    2. Hrabe J,
    3. Kangarlu A, et al
    . Correction of eddy-current distortions in diffusion tensor images using the known directions and strengths of diffusion gradients. J Magn Reson Imaging 2006;24:1188–1193 doi:10.1002/jmri.20727 pmid:17024663
    CrossRefPubMedGoogle Scholar
  44. 44.↵
    1. Coenen VA,
    2. Varkuti B,
    3. Parpaley Y, et al
    . Postoperative neuroimaging analysis of DRT deep brain stimulation revision surgery for complicated essential tremor. Acta Neurochir (Wien) 2017;159:779–787 doi:10.1007/s00701-017-3134-z
    CrossRefPubMedGoogle Scholar
  45. 45.↵
    1. Yamada K,
    2. Sakai K,
    3. Akazawa K, et al
    . MR tractography: a review of its clinical applications. Magn Reson Med Sci 2009;8:165–174 doi:10.2463/mrms.8.165 pmid:20035125
    CrossRefPubMedGoogle Scholar
  46. 46.↵
    1. Nowacki A,
    2. Schlaier J,
    3. Debove I, et al
    . Validation of diffusion tensor imaging tractography to visualize the dentatorubrothalamic tract for surgical planning. J Neurosurg 2018;130:99–108 doi:10.3171/2017.9.JNS171321 pmid:29570012
    CrossRefPubMedGoogle Scholar
  47. 47.↵
    1. Baek H,
    2. Lockwood D,
    3. Mason EJ, et al
    . Clinical Intervention Using Focused Ultrasound (FUS) Stimulation of the Brain in Diverse Neurological Disorders. Front Neurol 2022;13:880814 doi:10.3389/fneur.2022.880814 pmid:35614924
    CrossRefPubMedGoogle Scholar
  48. 48.↵
    1. Mattay RR,
    2. Kim K,
    3. Shah L, et al
    . MR Thermometry during Transcranial MR Imaging-Guided Focused Ultrasound Procedures: A Review. AJNR Am J Neuroradiol 2023;45:1–8 doi:10.3174/ajnr.A8038 pmid:38123912
    CrossRefPubMedGoogle Scholar
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article
Cite this article
0 Responses
Respond to this article
Share
Bookmark this article
Predicting Post-Operative Side Effects in VIM MRgFUS Based on THalamus Optimized Multi Atlas Segmentation (THOMAS) on White-Matter-Nulled MRI: A Retrospective Study
Sonoko Oshima, Asher Kim, Xiaonan R. Sun, Ziad Rifi, Katy A. Cross, Katherine A. Fu, Noriko Salamon, Benjamin M. Ellingson, Ausaf A. Bari, Jingwen Yao
American Journal of Neuroradiology Dec 2024, DOI: 10.3174/ajnr.A8448
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Role of Brain PET in Alzheimer's Disease
  • Hydrocephalus Impact on FDG PET SPM in Dementia
  • Anti-Amyloid Therapy & CBF as a Response Biomarker
Show more Neurodegenerative Disorder Imaging

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire
Email this Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Predicting Post-Operative Side Effects in VIM MRgFUS Based on THalamus Optimized Multi Atlas Segmentation (THOMAS) on White-Matter-Nulled MRI: A Retrospective Study
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Sonoko Oshima, Asher Kim, Xiaonan R. Sun, Ziad Rifi, Katy A. Cross, Katherine A. Fu, Noriko Salamon, Benjamin M. Ellingson, Ausaf A. Bari, Jingwen Yao
Predicting Post-Operative Side Effects in VIM MRgFUS Based on THalamus Optimized Multi Atlas Segmentation (THOMAS) on White-Matter-Nulled MRI: A Retrospective Study
American Journal of Neuroradiology Dec 2024, DOI: 10.3174/ajnr.A8448

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

We use cookies on this site to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies.