Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleARTIFICIAL INTELLIGENCE

Deep Learning–Based Super-Resolution Reconstruction on Undersampled Brain Diffusion-Weighted MRI for Infarction Stroke: A Comparison to Conventional Iterative Reconstruction

Shuo Zhang, Meimeng Zhong, Hanxu Shenliu, Nan Wang, Shuai Hu, Xulun Lu, Liangjie Lin, Haonan Zhang, Yan Zhao, Chao Yang, Hongbo Feng and Qingwei Song
American Journal of Neuroradiology December 2024, DOI: https://doi.org/10.3174/ajnr.A8482
Shuo Zhang
aFrom the Department of Nuclear Medicine (S.Z., H.F.), The First Affiliated Hospital of Dalian Medical University, Dalian, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Shuo Zhang
Meimeng Zhong
bDepartment of Radiology (M.Z., N.W., S.H., X.L., H.Z., C.Y., Q.S.), The First Affiliated Hospital of Dalian Medical University, Dalian, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Meimeng Zhong
Hanxu Shenliu
cDepartment of Radiology (H.S.), Shengjing Hospital of China Medical University, Shenyang, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hanxu Shenliu
Nan Wang
bDepartment of Radiology (M.Z., N.W., S.H., X.L., H.Z., C.Y., Q.S.), The First Affiliated Hospital of Dalian Medical University, Dalian, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nan Wang
Shuai Hu
bDepartment of Radiology (M.Z., N.W., S.H., X.L., H.Z., C.Y., Q.S.), The First Affiliated Hospital of Dalian Medical University, Dalian, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Shuai Hu
Xulun Lu
bDepartment of Radiology (M.Z., N.W., S.H., X.L., H.Z., C.Y., Q.S.), The First Affiliated Hospital of Dalian Medical University, Dalian, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Xulun Lu
Liangjie Lin
dSupport (L.L.), Philips Healthcare, Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Liangjie Lin
Haonan Zhang
bDepartment of Radiology (M.Z., N.W., S.H., X.L., H.Z., C.Y., Q.S.), The First Affiliated Hospital of Dalian Medical University, Dalian, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Haonan Zhang
Yan Zhao
eDepartment of Information Center (Y.Z.), The First Affiliated Hospital of Dalian Medical University, Liaoning, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yan Zhao
Chao Yang
bDepartment of Radiology (M.Z., N.W., S.H., X.L., H.Z., C.Y., Q.S.), The First Affiliated Hospital of Dalian Medical University, Dalian, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Chao Yang
Hongbo Feng
aFrom the Department of Nuclear Medicine (S.Z., H.F.), The First Affiliated Hospital of Dalian Medical University, Dalian, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hongbo Feng
Qingwei Song
bDepartment of Radiology (M.Z., N.W., S.H., X.L., H.Z., C.Y., Q.S.), The First Affiliated Hospital of Dalian Medical University, Dalian, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Qingwei Song
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Gaddamanugu S,
    2. Shafaat O,
    3. Sotoudeh H, et al
    . Clinical applications of diffusion-weighted sequence in brain imaging: beyond stroke. Neuroradiology 2022;64:15–30 doi:10.1007/s00234-021-02819-3 pmid:34596716
    CrossRefPubMed
  2. 2.↵
    1. Maguida G,
    2. Shuaib A
    . Collateral circulation in ischemic stroke: an updated review. J Stroke 2023;25:179–98 doi:10.5853/jos.2022.02936 pmid:36907186
    CrossRefPubMed
  3. 3.↵
    1. Popiela T J,
    2. Krzyściak W,
    3. Pilato F, et al
    . The assessment of endovascular therapies in ischemic stroke: management, problems and future approaches. J Clin Med 2022;11:1864 doi:10.3390/jcm11071864
    CrossRefPubMed
  4. 4.↵
    1. Doubal FN,
    2. Dennis MS,
    3. Wardlaw JM
    . Characteristics of patients with minor ischaemic strokes and negative MRI: a cross-sectional study. J Neurol Neurosurg Psychiatry 2011;82:540–42 doi:10.1136/jnnp.2009.190298 pmid:20584742
    Abstract/FREE Full Text
  5. 5.↵
    1. Kawano H,
    2. Hirano T,
    3. Nakajima M, et al
    . Diffusion-weighted magnetic resonance imaging may underestimate acute ischemic lesions: cautions on neglecting a computed tomography-diffusion-weighted imaging discrepancy. Stroke 2013;44:1056–61 doi:10.1161/STROKEAHA.111.000254 pmid:23412380
    Abstract/FREE Full Text
  6. 6.↵
    1. Sylaja PN,
    2. Coutts SB,
    3. Krol A, et al
    ; VISION Study Group. When to expect negative diffusion-weighted images in stroke and transient ischemic attack. Stroke 2008;39:1898–1900 doi:10.1161/STROKEAHA.107.497453 pmid:18420957
    Abstract/FREE Full Text
  7. 7.↵
    1. Tamada T,
    2. Ueda Y,
    3. Kido A, et al
    . Clinical application of single-shot echo-planar diffusion-weighted imaging with compressed SENSE in prostate MRI at 3T: preliminary experience. MAGMA 2022;35:549–56 doi:10.1007/s10334-022-01010-w pmid:35403993
    CrossRefPubMed
  8. 8.↵
    1. Kaga T,
    2. Noda Y,
    3. Mori T, et al
    . Diffusion-weighted imaging of the abdomen using echo planar imaging with compressed SENSE: feasibility, image quality, and ADC value evaluation. Eur J Radiol 2021;142:109889 doi:10.1016/j.ejrad.2021.109889 pmid:34388627
    CrossRefPubMed
  9. 9.↵
    1. Kim M,
    2. Lee SM,
    3. Park C, et al
    . Deep learning-enhanced parallel imaging and simultaneous multislice acceleration reconstruction in knee MRI. Invest Radiol 2022;57:826–33 doi:10.1097/RLI.0000000000000900 pmid:35776434
    CrossRefPubMed
  10. 10.↵
    1. Wang Q,
    2. Zhao W,
    3. Xing X, et al
    . Feasibility of AI-assisted compressed sensing protocols in knee MR imaging: a prospective multi-reader study. Eur Radiol 2023;33:8585–96 doi:10.1007/s00330-023-09823-6 pmid:37382615
    CrossRefPubMed
  11. 11.↵
    1. Pezzotti N,
    2. Yousefi S,
    3. Elmahdy MS, et al
    . An adaptive intelligence algorithm for undersampled knee MRI reconstruction. IEEE Access 2020;8:204825–38 doi:10.1109/ACCESS.2020.3034287
    CrossRef
  12. 12.↵
    1. Yao T,
    2. St Clair N,
    3. Miller GF, et al
    . A deep learning pipeline for assessing ventricular volumes from a cardiac MRI registry of patients with single ventricle physiology. Radiology Artif Intell 2024;6:e230132 pmid:38166332
    CrossRefPubMed
  13. 13.↵
    1. Knuth F,
    2. Tohidinezhad F,
    3. Winter RM, et al
    . Quantitative MRI-based radiomics analysis identifies blood flow feature associated to overall survival for rectal cancer patients. Sci Rep 2024;14:258 doi:10.1038/s41598-023-50966-9 pmid:38167665
    CrossRefPubMed
  14. 14.↵
    1. Li Y,
    2. Lv X,
    3. Chen C, et al
    . A deep learning model integrating multisequence MRI to predict EGFR mutation subtype in brain metastases from non-small cell lung cancer. Eur Radiology Exp 2024;8:2 doi:10.1186/s41747-023-00396-z pmid:38169047
    CrossRefPubMed
  15. 15.↵
    1. Ueda T,
    2. Ohno Y,
    3. Yamamoto K, et al
    . Deep learning reconstruction of diffusion-weighted MRI improves image quality for prostatic imaging. Radiology 2022;303:373–81 doi:10.1148/radiol.204097 pmid:35103536
    CrossRefPubMed
  16. 16.↵
    1. Kim DK,
    2. Lee S-Y,
    3. Lee J, et al
    . Deep learning-based k-space-to-image reconstruction and super resolution for diffusion-weighted imaging in whole-spine MRI. Magn Reson Imaging 2024;105:82–91 doi:10.1016/j.MRI.2023.11.003 pmid:37939970
    CrossRefPubMed
  17. 17.↵
    1. Lustig M,
    2. Pauly JM
    . SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn Reson Med 2010;64:457–71 doi:10.1002/mrm.22428 pmid:20665790
    CrossRefPubMed
  18. 18.↵
    1. Chaudhari AS,
    2. Fang Z,
    3. Kogan F, et al
    . Super-resolution musculoskeletal MRI using deep learning. Magn Reson Med 2018;80:2139–54 doi:10.1002/mrm.27178 pmid:29582464
    CrossRefPubMed
  19. 19.↵
    1. Bischoff LM,
    2. Peeters JM,
    3. Weinhold L, et al
    . Deep learning super-resolution reconstruction for fast and motion-robust T2-weighted prostate MRI. Radiology 2023;308:e230427 doi:10.1148/radiol.230427 pmid:37750774
    CrossRefPubMed
  20. 20.↵
    1. Pezzotti N,
    2. de Weerdt E,
    3. Yousefi S, et al
    . Adaptive-CS-Net: FastMRI with Adaptive Intelligence. arXiv e-prints 2019 arXiv:1912.12259
  21. 21.↵
    1. Jurka M,
    2. Macova I,
    3. Wagnerova M, et al
    . Deep-learning-based reconstruction of T2-weighted magnetic resonance imaging of the prostate accelerated by compressed sensing provides improved image quality at half the acquisition time. Quant Imaging Med Surg 2024;14:3534–43 doi:10.21037/qims-23-1488 pmid:38720867
    CrossRefPubMed
  22. 22.↵
    1. Dong C,
    2. Loy CC,
    3. He K, et al
    . Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 2016;38:295–307 doi:10.1109/TPAMI.2015.2439281 pmid:26761735
    CrossRefPubMed
  23. 23.↵
    1. Li Y,
    2. Sixou B,
    3. Peyrin F
    . A review of the deep learning methods for medical images super resolution problems. IRBM 2020;42:120–33 doi:10.1016/j.irbm.2020.08.004
    CrossRef
  24. 24.↵
    1. Yeoh H,
    2. Hong SH,
    3. Ahn C, et al
    . Deep learning algorithm for simultaneous noise reduction and edge sharpening in low-dose CT images: a pilot study using lumbar spine CT. Korean J Radiol 2021;22:1850–57 doi:10.3348/kjr.2021.0140 pmid:34431248
    CrossRefPubMed
  25. 25.↵
    1. Tatsugami F,
    2. Higaki T,
    3. Nakamura Y, et al
    . Deep learning-based image restoration algorithm for coronary CT angiography. Eur Radiol 2019;29:5322–29 doi:10.1007/s00330-019-06183-y pmid:30963270
    CrossRefPubMed
  26. 26.↵
    1. Tatsugami F,
    2. Higaki T,
    3. Sakane H, et al
    . Coronary artery stent evaluation with model-based iterative reconstruction at coronary CT angiography. Acad Radiol 2017;24:975–81 doi:10.1016/j.acra.2016.12.020 pmid:28214228
    CrossRefPubMed
  27. 27.↵
    1. Jia H,
    2. Yin Q,
    3. Lu M
    . Blind-noise image denoising with block-matching domain transformation filtering and improved guided filtering. Sci Rep 2022;12:16195 doi:10.1038/s41598-022-20578-w pmid:36171466
    CrossRefPubMed
  28. 28.↵
    1. Yang J,
    2. Wang C,
    3. Xiang J, et al
    . Oral CT image processing based on oral CT image filtering algorithm. Comput Intell Neurosci 2022;2022:6041872 doi:10.1155/2022/6041872 pmid:36172316
    CrossRefPubMed
  29. 29.↵
    1. Dwork N,
    2. O’Connor D,
    3. Baron CA, et al
    . Utilizing the wavelet transform’s structure in compressed sensing. Signal Image Video Process 2021;15:1407–14 doi:10.1007/s11760-021-01872-y pmid:34531930
    CrossRefPubMed
  30. 30.↵
    1. Fervers P,
    2. Zaeske C,
    3. Rauen P, et al
    . Conventional and deep-learning-based image reconstructions of undersampled K-space data of the lumbar spine using compressed sensing in MRI: a comparative study on 20 subjects. Diagnostics (Basel) 2023;13:418 doi:10.3390/diagnostics13030418
    CrossRefPubMed
  31. 31.↵
    1. Chen Y,
    2. Li J,
    3. Qu X, et al
    . Partial Fourier transform reconstruction for single-shot MRI with linear frequency-swept excitation. Magn Reson Med 2013;69:1326–36 doi:10.1002/mrm.24366 pmid:22706702
    CrossRefPubMed
  32. 32.↵
    1. Zhu H,
    2. Jiang L,
    3. Zhang H, et al
    . An automatic machine learning approach for ischemic stroke onset time identification based on DWI and FLAIR imaging. Neuroimage Clin 2021;31:102744 doi:10.1016/j.nicl.2021.102744 pmid:34245995
    CrossRefPubMed
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Deep Learning–Based Super-Resolution Reconstruction on Undersampled Brain Diffusion-Weighted MRI for Infarction Stroke: A Comparison to Conventional Iterative Reconstruction
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Shuo Zhang, Meimeng Zhong, Hanxu Shenliu, Nan Wang, Shuai Hu, Xulun Lu, Liangjie Lin, Haonan Zhang, Yan Zhao, Chao Yang, Hongbo Feng, Qingwei Song
Deep Learning–Based Super-Resolution Reconstruction on Undersampled Brain Diffusion-Weighted MRI for Infarction Stroke: A Comparison to Conventional Iterative Reconstruction
American Journal of Neuroradiology Dec 2024, DOI: 10.3174/ajnr.A8482

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Deep Learning–Based Super-Resolution Reconstruction on Undersampled Brain Diffusion-Weighted MRI for Infarction Stroke: A Comparison to Conventional Iterative Reconstruction
Shuo Zhang, Meimeng Zhong, Hanxu Shenliu, Nan Wang, Shuai Hu, Xulun Lu, Liangjie Lin, Haonan Zhang, Yan Zhao, Chao Yang, Hongbo Feng, Qingwei Song
American Journal of Neuroradiology Dec 2024, DOI: 10.3174/ajnr.A8482
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (1)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Detectability of acute ischemic stroke with thin (3 mm) axial versus thin (3 mm) coronal diffusion-weighted imaging in patients presenting to the emergency department with acute dizziness
    Richard J. Lozano, Faryal Shareef, Anish Neupane, Zaid Siddique, Rudra Joshi, Luca Pasquini, Long H. Tu, Amit Mahajan
    Emergency Radiology 2025 32 2

More in this TOC Section

  • AI-Enhanced Photon-Counting CT of Temporal Bone
  • DIRDL for Inflammatory Myelopathies
  • An AI De-identification Method for Pediatric MRIs
Show more Artificial Intelligence

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire