Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleARTIFICIAL INTELLIGENCE

Deep Learning–Based Super-Resolution Reconstruction on Undersampled Brain Diffusion-Weighted MRI for Infarction Stroke: A Comparison to Conventional Iterative Reconstruction

Shuo Zhang, Meimeng Zhong, Hanxu Shenliu, Nan Wang, Shuai Hu, Xulun Lu, Liangjie Lin, Haonan Zhang, Yan Zhao, Chao Yang, Hongbo Feng and Qingwei Song
American Journal of Neuroradiology December 2024, DOI: https://doi.org/10.3174/ajnr.A8482
Shuo Zhang
aFrom the Department of Nuclear Medicine (S.Z., H.F.), The First Affiliated Hospital of Dalian Medical University, Dalian, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Shuo Zhang
Meimeng Zhong
bDepartment of Radiology (M.Z., N.W., S.H., X.L., H.Z., C.Y., Q.S.), The First Affiliated Hospital of Dalian Medical University, Dalian, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Meimeng Zhong
Hanxu Shenliu
cDepartment of Radiology (H.S.), Shengjing Hospital of China Medical University, Shenyang, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hanxu Shenliu
Nan Wang
bDepartment of Radiology (M.Z., N.W., S.H., X.L., H.Z., C.Y., Q.S.), The First Affiliated Hospital of Dalian Medical University, Dalian, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nan Wang
Shuai Hu
bDepartment of Radiology (M.Z., N.W., S.H., X.L., H.Z., C.Y., Q.S.), The First Affiliated Hospital of Dalian Medical University, Dalian, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Shuai Hu
Xulun Lu
bDepartment of Radiology (M.Z., N.W., S.H., X.L., H.Z., C.Y., Q.S.), The First Affiliated Hospital of Dalian Medical University, Dalian, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Xulun Lu
Liangjie Lin
dSupport (L.L.), Philips Healthcare, Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Liangjie Lin
Haonan Zhang
bDepartment of Radiology (M.Z., N.W., S.H., X.L., H.Z., C.Y., Q.S.), The First Affiliated Hospital of Dalian Medical University, Dalian, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Haonan Zhang
Yan Zhao
eDepartment of Information Center (Y.Z.), The First Affiliated Hospital of Dalian Medical University, Liaoning, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yan Zhao
Chao Yang
bDepartment of Radiology (M.Z., N.W., S.H., X.L., H.Z., C.Y., Q.S.), The First Affiliated Hospital of Dalian Medical University, Dalian, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Chao Yang
Hongbo Feng
aFrom the Department of Nuclear Medicine (S.Z., H.F.), The First Affiliated Hospital of Dalian Medical University, Dalian, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hongbo Feng
Qingwei Song
bDepartment of Radiology (M.Z., N.W., S.H., X.L., H.Z., C.Y., Q.S.), The First Affiliated Hospital of Dalian Medical University, Dalian, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Qingwei Song
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Abstract

BACKGROUND AND PURPOSE: DWI is crucial for detecting infarction stroke. However, its spatial resolution is often limited, hindering accurate lesion visualization. Our aim was to evaluate the image quality and diagnostic confidence of deep learning (DL)-based super-resolution reconstruction for brain DWI of infarction stroke.

MATERIALS AND METHODS: This retrospective study enrolled 114 consecutive participants who underwent brain DWI. The DWI images were reconstructed with 2 schemes: 1) DL-based super-resolution reconstruction (DWIDL); and 2) conventional compressed sensing reconstruction (DWICS). Qualitative image analysis included overall image quality, lesion conspicuity, and diagnostic confidence in infarction stroke of different lesion sizes. Quantitative image quality assessments were performed by measurements of SNR, contrast-to-noise ratio (CNR), ADC, and edge rise distance. Group comparisons were conducted by using a paired t test for normally distributed data and the Wilcoxon test for non-normally distributed data. The overall agreement between readers for qualitative ratings was assessed by using the Cohen κ coefficient. A P value less than .05 was considered statistically significant.

RESULTS: A total of 114 DWI examinations constituted the study cohort. For the qualitative assessment, overall image quality, lesion conspicuity, and diagnostic confidence in infarction stroke lesions (lesion size <1.5 cm) improved by DWIDL compared with DWICS (all P < .001). For the quantitative analysis, edge rise distance of DWIDL was reduced compared with that of DWICS (P < .001), and no significant difference in SNR, CNR, and ADC values (all P > .05).

CONCLUSIONS: Compared with the conventional compressed sensing reconstruction, the DL-based super-resolution reconstruction demonstrated superior image quality and was feasible for achieving higher diagnostic confidence in infarction stroke.

ABBREVIATIONS:

CNN
convolutional neural network
CNR
contrast-to-noise ratio
CS
compressed sensing
DL
deep learning;
DWICS
conventional compressed sensing reconstruction
DWIDL
DL-based super-resolution reconstruction
ERD
edge rise distance
IQR
interquartile range

Footnotes

  • Shuo Zhang and Meimeng Zhong are co-first authors.

  • Hongbo Feng and Qingwei Song are co-corresponding authors.

  • Disclosure forms provided by the authors are available with the full text and PDF of this article at www.ajnr.org.

  • © 2025 by American Journal of Neuroradiology
View Full Text

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Deep Learning–Based Super-Resolution Reconstruction on Undersampled Brain Diffusion-Weighted MRI for Infarction Stroke: A Comparison to Conventional Iterative Reconstruction
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Shuo Zhang, Meimeng Zhong, Hanxu Shenliu, Nan Wang, Shuai Hu, Xulun Lu, Liangjie Lin, Haonan Zhang, Yan Zhao, Chao Yang, Hongbo Feng, Qingwei Song
Deep Learning–Based Super-Resolution Reconstruction on Undersampled Brain Diffusion-Weighted MRI for Infarction Stroke: A Comparison to Conventional Iterative Reconstruction
American Journal of Neuroradiology Dec 2024, DOI: 10.3174/ajnr.A8482

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Deep Learning–Based Super-Resolution Reconstruction on Undersampled Brain Diffusion-Weighted MRI for Infarction Stroke: A Comparison to Conventional Iterative Reconstruction
Shuo Zhang, Meimeng Zhong, Hanxu Shenliu, Nan Wang, Shuai Hu, Xulun Lu, Liangjie Lin, Haonan Zhang, Yan Zhao, Chao Yang, Hongbo Feng, Qingwei Song
American Journal of Neuroradiology Dec 2024, DOI: 10.3174/ajnr.A8482
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (1)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Detectability of acute ischemic stroke with thin (3 mm) axial versus thin (3 mm) coronal diffusion-weighted imaging in patients presenting to the emergency department with acute dizziness
    Richard J. Lozano, Faryal Shareef, Anish Neupane, Zaid Siddique, Rudra Joshi, Luca Pasquini, Long H. Tu, Amit Mahajan
    Emergency Radiology 2025 32 2

More in this TOC Section

  • AI-Enhanced Photon-Counting CT of Temporal Bone
  • An AI De-identification Method for Pediatric MRIs
  • Aneurysm Segmentation on MRI-TOF with AI
Show more ARTIFICIAL INTELLIGENCE

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire