Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain

Automated Detection of Cerebral Aneurysms on TOF-MRA Using a Deep Learning Approach: An External Validation Study

N.C. Lehnen, R. Haase, F.C. Schmeel, H. Vatter, F. Dorn, A. Radbruch and D. Paech
American Journal of Neuroradiology November 2022, DOI: https://doi.org/10.3174/ajnr.A7695
N.C. Lehnen
aFrom the Department of Neuroradiology (N.C.L., R.H., C.F.S., F.D., A.R., D.P.), University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N.C. Lehnen
R. Haase
aFrom the Department of Neuroradiology (N.C.L., R.H., C.F.S., F.D., A.R., D.P.), University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. Haase
F.C. Schmeel
aFrom the Department of Neuroradiology (N.C.L., R.H., C.F.S., F.D., A.R., D.P.), University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F.C. Schmeel
H. Vatter
bDepartment of Neurosurgery (H.V.), University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H. Vatter
F. Dorn
aFrom the Department of Neuroradiology (N.C.L., R.H., C.F.S., F.D., A.R., D.P.), University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F. Dorn
A. Radbruch
aFrom the Department of Neuroradiology (N.C.L., R.H., C.F.S., F.D., A.R., D.P.), University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Radbruch
D. Paech
aFrom the Department of Neuroradiology (N.C.L., R.H., C.F.S., F.D., A.R., D.P.), University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Paech
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Brown RD,
    2. Broderick JP
    . Unruptured intracranial aneurysms: epidemiology, natural history, management options, and familial screening. Lancet Neurol 2014;13:393–404 doi:10.1016/S1474-4422(14)70015-8 pmid:24646873
    CrossRefPubMed
  2. 2.↵
    1. White PM,
    2. Wardlaw JM,
    3. Easton V
    . Can noninvasive imaging accurately depict intracranial aneurysms? A systematic review. Radiology 2000;217:361–70 doi:10.1148/radiology.217.2.r00nv06361 pmid:11058629
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. McDonald RJ,
    2. Schwartz KM,
    3. Eckel LJ, et al
    . The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Acad Radiol 2015;22:1191–98 doi:10.1016/j.acra.2015.05.007 pmid:26210525
    CrossRefPubMed
  4. 4.↵
    1. Yang X,
    2. Blezek DJ,
    3. Cheng LTE, et al
    . Computer-aided detection of intracranial aneurysms in MR angiography. J Digit Imaging 2011;24:86–95 doi:10.1007/s10278-009-9254-0 pmid:19937083
    CrossRefPubMed
  5. 5.↵
    1. Hirai T,
    2. Korogi Y,
    3. Arimura H, et al
    . Intracranial aneurysms at MR angiography: effect of computer-aided diagnosis on radiologists’ detection performance. Radiology 2005;237:605–10 doi:10.1148/radiol.2372041734 pmid:16179404
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Štepán-Buksakowska IL,
    2. Accurso JM,
    3. Diehn FE, et al
    . Computer-aided diagnosis improves detection of small intracranial aneurysms on MRA in a clinical setting. AJNR Am J Neuroradiol 2014;35:1897–902 doi:10.3174/ajnr.A3996 pmid:24924543
    Abstract/FREE Full Text
  7. 7.↵
    1. Yang J,
    2. Xie M,
    3. Hu C, et al
    . Deep learning for detecting cerebral aneurysms with CT angiography. Radiology 2021;298:155–63 doi:10.1148/radiol.2020192154 pmid:33141003
    CrossRefPubMed
  8. 8.↵
    1. Park A,
    2. Chute C,
    3. Rajpurkar P, et al
    . Deep learning-assisted diagnosis of cerebral aneurysms using the HeadXNet Model. JAMA Netw Open 2019;2:e195600 doi:10.1001/jamanetworkopen.2019.5600 pmid:31173130
    CrossRefPubMed
  9. 9.↵
    1. Shahzad R,
    2. Pennig L,
    3. Goertz L, et al
    . Fully automated detection and segmentation of intracranial aneurysms in subarachnoid hemorrhage on CTA using deep learning. Sci Rep 2020;10:21799 doi:10.1038/s41598-020-78384-1 pmid:33311535
    CrossRefPubMed
  10. 10.↵
    1. Nakao T,
    2. Hanaoka S,
    3. Nomura Y, et al
    . Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography. J Magn Reson Imaging 2018;47:948–53 doi:10.1002/jmri.25842 pmid:28836310
    CrossRefPubMed
  11. 11.↵
    1. Ueda D,
    2. Yamamoto A,
    3. Nishimori M, et al
    . Deep learning for MR angiography: automated detection of cerebral aneurysms. Radiology 2019;290:187–94 doi:10.1148/radiol.2018180901 pmid:30351253
    CrossRefPubMed
  12. 12.↵
    1. Stember JN,
    2. Chang P,
    3. Stember DM, et al
    . Convolutional neural networks for the detection and measurement of cerebral aneurysms on magnetic resonance angiography. J Digit Imaging 2019;32:808–15 doi:10.1007/s10278-018-0162-z pmid:30511281
    CrossRefPubMed
  13. 13.↵
    1. Sichtermann T,
    2. Faron A,
    3. Sijben R, et al
    . Deep learning-based detection of intracranial aneurysms in 3D TOF-MRA. AJNR Am J Neuroradiol 2019;40:25–32 doi:10.3174/ajnr.A5911 pmid:30573461
    Abstract/FREE Full Text
  14. 14.↵
    1. Terasaki Y,
    2. Yokota H,
    3. Tashiro K, et al
    . Multidimensional deep learning reduces false-positives in the automated detection of cerebral aneurysms on time-of-flight magnetic resonance angiography: a multi-center study. Front Neurol 2021;12:742126. doi:10.3389/fneur.2021.742126 pmid:35115991
    CrossRefPubMed
  15. 15.↵
    1. Chen G,
    2. Wei X,
    3. Lei H, et al
    . Automated computer-assisted detection system for cerebral aneurysms in time-of-flight magnetic resonance angiography using fully convolutional network. Biomed Eng Online 2020;19:38 doi:10.1186/s12938-020-00770-7 pmid:32471439
    CrossRefPubMed
  16. 16.↵
    1. Claux F,
    2. Baudouin M,
    3. Bogey C, et al
    . Dense, deep learning-based intracranial aneurysm detection on TOF MRI using two-stage regularized U-Net. J Neuroradiol 2022 Mar 27. [Epub ahead of print] doi:10.1016/j.neurad.2022.03.005 pmid:35307554
    CrossRefPubMed
  17. 17.↵
    1. Sohn B,
    2. Park KY,
    3. Choi J, et al
    . Deep learning-based software improves clinicians' detection sensitivity of aneurysms on brain TOF-MRA. AJNR Am J Neuroradiol 2021;42:1769–75 doi:10.3174/ajnr.A7242 pmid:34385143
    Abstract/FREE Full Text
  18. 18.↵
    1. Çiçek Ö,
    2. Abdulkadir A,
    3. Lienkamp SS, et al
    . 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. 2016. https://arxiv.org/pdf/1606.06650. Accessed April 4, 2022
  19. 19.↵
    1. Kuhn M
    . Building predictive models in R using the caret package. Journal of Statistical Software 2008;28:1–26 doi:10.18637/jss.v028.i05
    CrossRef
  20. 20.↵
    1. Park SH,
    2. Han K
    . Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 2018;286:800–09 doi:10.1148/radiol.2017171920 pmid:29309734
    CrossRefPubMed
  21. 21.↵
    1. Kupersmith MJ,
    2. Hurst R,
    3. Berenstein A, et al
    . The benign course of cavernous carotid artery aneurysms. J Neurosurg 1992;77:690–93 doi:10.3171/jns.1992.77.5.0690 pmid:1403108
    CrossRefPubMedWeb of Science
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Automated Detection of Cerebral Aneurysms on TOF-MRA Using a Deep Learning Approach: An External Validation Study
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
N.C. Lehnen, R. Haase, F.C. Schmeel, H. Vatter, F. Dorn, A. Radbruch, D. Paech
Automated Detection of Cerebral Aneurysms on TOF-MRA Using a Deep Learning Approach: An External Validation Study
American Journal of Neuroradiology Nov 2022, DOI: 10.3174/ajnr.A7695

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Automated Detection of Cerebral Aneurysms on TOF-MRA Using a Deep Learning Approach: An External Validation Study
N.C. Lehnen, R. Haase, F.C. Schmeel, H. Vatter, F. Dorn, A. Radbruch, D. Paech
American Journal of Neuroradiology Nov 2022, DOI: 10.3174/ajnr.A7695
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATION:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Automation Bias in AI-Assisted Detection of Cerebral Aneurysms on Time-of-Flight MR-Angiography
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire