Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleReview articles
Open Access

Small Vessel Disease, a Marker of Brain Health: What the Radiologist Needs to Know

A. Mahammedi, L.L. Wang, B.J. Williamson, P. Khatri, B. Kissela, R.P. Sawyer, R. Shatz, V. Khandwala and A. Vagal
American Journal of Neuroradiology October 2021, DOI: https://doi.org/10.3174/ajnr.A7302
A. Mahammedi
aFrom the Departments of Neuroradiology (A.M., L.L.W., B.J.W., V.K., A.V.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Mahammedi
L.L. Wang
aFrom the Departments of Neuroradiology (A.M., L.L.W., B.J.W., V.K., A.V.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L.L. Wang
B.J. Williamson
aFrom the Departments of Neuroradiology (A.M., L.L.W., B.J.W., V.K., A.V.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B.J. Williamson
P. Khatri
bNeurology (P.K., B.K., R.P.S., R.S.), University of Cincinnati Medical Center, Cincinnati, Ohio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P. Khatri
B. Kissela
bNeurology (P.K., B.K., R.P.S., R.S.), University of Cincinnati Medical Center, Cincinnati, Ohio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Kissela
R.P. Sawyer
bNeurology (P.K., B.K., R.P.S., R.S.), University of Cincinnati Medical Center, Cincinnati, Ohio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.P. Sawyer
R. Shatz
bNeurology (P.K., B.K., R.P.S., R.S.), University of Cincinnati Medical Center, Cincinnati, Ohio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. Shatz
V. Khandwala
aFrom the Departments of Neuroradiology (A.M., L.L.W., B.J.W., V.K., A.V.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for V. Khandwala
A. Vagal
aFrom the Departments of Neuroradiology (A.M., L.L.W., B.J.W., V.K., A.V.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Vagal
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Pantoni L
    . Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010;9:689–701 doi:10.1016/S1474-4422(10)70104-6 pmid:20610345
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Wardlaw JM,
    2. Smith C,
    3. Dichgans M
    . Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol 2013;12:483–97 doi:10.1016/S1474-4422(13)70060-7 pmid:23602162
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Debette S,
    2. Schilling S,
    3. Duperron MG, et al
    . Clinical significance of magnetic resonance imaging markers of vascular brain injury: a systematic review and meta-analysis. JAMA Neurol 2019;76:81–94 doi:10.1001/jamaneurol.2018.3122 pmid:30422209
    CrossRefPubMed
  4. 4.↵
    1. Georgakis MK,
    2. Duering M,
    3. Wardlaw JM, et al
    . WMH and long-term outcomes in ischemic stroke: a systematic review and meta-analysis. Neurology 2019;92:e1298–1308 doi:10.1212/WNL.0000000000007142 pmid:30770431
    CrossRefPubMed
  5. 5.↵
    1. Wardlaw JM,
    2. Smith C,
    3. Dichgans M
    . Small vessel disease: mechanisms and clinical implications. Lancet Neurol 2019;18:684–96 doi:10.1016/S1474-4422(19)30079-1 pmid:31097385
    CrossRefPubMed
  6. 6.↵
    1. Kapasi A,
    2. DeCarli C,
    3. Schneider JA
    . Impact of multiple pathologies on the threshold for clinically overt dementia. Acta Neuropathol 2017;134:171–86 doi:10.1007/s00401-017-1717-7 pmid:28488154
    CrossRefPubMed
  7. 7.↵
    1. Bos D,
    2. Wolters FJ,
    3. Darweesh SKL, et al
    . Cerebral small vessel disease and the risk of dementia: a systematic review and meta-analysis of population-based evidence. Alzheimers Dement 2018;14:1482–12 doi:10.1016/j.jalz.2018.04.007 pmid:29792871
    CrossRefPubMed
  8. 8.↵
    1. Shibuya M,
    2. da Costa Leite C,
    3. Lucato LT
    . Neuroimaging in cerebral small vessel disease: update and new concepts. Dement Neuropsychol 2017;11:336–42 doi:10.1590/1980-57642016dn11-040002 pmid:29354213
    CrossRefPubMed
  9. 9.↵
    1. Gorelick PB,
    2. Furie KL,
    3. Iadecola C, et al
    . Defining optimal brain health in adults. Stroke 2017;48:e284–303 doi:10.1161/STR.0000000000000148 pmid:28883125
    Abstract/FREE Full Text
  10. 10.↵
    1. Pasi M,
    2. Cordonnier C
    . Clinical relevance of cerebral small vessel diseases. Stroke 2020;51:47–53 doi:10.1161/STROKEAHA.119.024148 pmid:31752613
    CrossRefPubMed
  11. 11.↵
    1. Wardlaw JM,
    2. Smith EE,
    3. Biessels GJ, et al
    ; STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013;12:822–38 doi:10.1016/S1474-4422(13)70124-8 pmid:23867200
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. van Veluw SJ,
    2. Shih AY,
    3. Smith EE, et al
    . Detection, risk factors, and functional consequences of cerebral microinfarcts. Lancet Neurol 2017;16:730–40 doi:10.1016/S1474-4422(17)30196-5 pmid:28716371
    CrossRefPubMed
  13. 13.↵
    1. Potter GM,
    2. Marlborough FJ,
    3. Wardlaw JM
    . Wide variation in definition, detection, and description of lacunar lesions on imaging. Stroke 2011;42:359–66 doi:10.1161/STROKEAHA.110.594754 pmid:21193752
    Abstract/FREE Full Text
  14. 14.↵
    1. Zhu YC,
    2. Dufouil C,
    3. Tzourio C, et al
    . Silent brain infarcts. Stroke 2011;42:1140– 45 doi:10.1161/STROKEAHA.110.600114 pmid:21393597
    Abstract/FREE Full Text
  15. 15.↵
    1. Charidimou A,
    2. Boulouis G,
    3. Haley K, et al
    . White matter hyperintensity patterns in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology 2016;86:505–11 doi:10.1212/WNL.0000000000002362 pmid:26747886
    Abstract/FREE Full Text
  16. 16.↵
    1. Fisher CM
    . Lacunar infarcts: a review. Cerebravascular Diseases 1991;1:311–20 doi:10.1159/000108861
    CrossRefWeb of Science
  17. 17.↵
    1. Fisher CM
    . Lacunar strokes and infarcts. Neurology 1982;32:871–76 doi:10.1212/WNL.32.8.871 doi:10.1212/wnl.32.8.871 pmid:7048128
    Abstract/FREE Full Text
  18. 18.↵
    1. Bailey EL,
    2. Smith C,
    3. Sudlow CL, et al
    . Pathology of lacunar ischemic stroke in humans: a systematic review. Brain Pathol 2012;22:583–91 doi:10.1111/j.1750-3639.2012.00575.x pmid:22329603
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Kim JS,
    2. Yoon Y
    . Single subcortical infarction associated with parental arterial disease: important yet neglected sub-type of atherothrombotic stroke. Int J Stroke 2013;8:197–203 doi:10.1111/j.1747-4949.2012.00816.x pmid:22568537
    CrossRefPubMed
  20. 20.↵
    1. Shi Y,
    2. Wardlaw JM
    . Update on cerebral small vessel disease: a dynamic whole-brain disease. Stroke Vasc Neurol 2016;1:83–92 doi:10.1136/svn-2016-000035 pmid:28959468
    Abstract/FREE Full Text
  21. 21.↵
    1. Weber R,
    2. Weimar C,
    3. Blatchford J, et al
    ; PRoFESS Imaging Substudy Group. Telmisartan on top of antihypertensive treatment does not prevent progression of cerebral white matter lesions in the Prevention Regimen for Effectively Avoiding Second Strokes (PRoFESS) MRI substudy. Stroke 2012;43:2336–42 doi:10.1161/STROKEAHA.111.648576 pmid:22738922
    Abstract/FREE Full Text
  22. 22.↵
    1. Jackson CA,
    2. Hutchinson A,
    3. Dennis MS, et al
    . Differing risk factor profiles of ischemic stroke subtypes: evidence for a distinct lacunar arteriopathy? Stroke 2010;41:624–29 doi:10.1161/STROKEAHA.109.558809 pmid:20150553
    Abstract/FREE Full Text
  23. 23.↵
    1. Lammie GA,
    2. Brannan F,
    3. Slattery J, et al
    . Nonhypertensive cerebral small-vessel disease. Stroke 1997;28:2222–29 doi:10.1161/01.str.28.11.2222 pmid:9368569
    Abstract/FREE Full Text
  24. 24.↵
    1. Godin O,
    2. Tzourio C,
    3. Maillard P, et al
    . Antihypertensive treatment and change in blood pressure are associated with the progression of white matter lesion volumes. Circulation 2011;123:266–73 doi:10.1161/CIRCULATIONAHA.110.961052 pmid:21220733
    Abstract/FREE Full Text
  25. 25.↵
    1. Bosetti F,
    2. Galis ZS,
    3. Bynoe MS, et al
    ; “Small Blood Vessels: Big Health Problems” Workshop Participants. Small blood vessels: big health problems?”: scientific recommendations of the National Institutes of Health Workshop. J Am Heart Assoc 2016;5:e0043898 doi:10.1161/JAHA.116.004389 pmid:27815267
    CrossRefPubMed
  26. 26.↵
    1. Petersen MA,
    2. Ryu JK,
    3. Akassoglou K
    . Fibrinogen in neurological diseases: mechanisms, imaging and therapeutics. Nat Rev Neurosci 2018;19:283–301 doi:10.1038/nrn.2018.13 pmid:29618808
    CrossRefPubMed
  27. 27.↵
    1. Wuerfel J,
    2. Haertle M,
    3. Waiczies H, et al
    . Perivascular spaces: MRI marker of inflammatory activity in the brain? Brain 2008;131:2332–40 doi:10.1093/brain/awn171 pmid:18676439
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Hawkins BT,
    2. Davis TP
    . The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005;57:173–85 doi:10.1124/pr.57.2.4 pmid:15914466
    Abstract/FREE Full Text
  29. 29.↵
    1. Bechmann I,
    2. Galea I,
    3. Perry VH
    . What is the blood–brain barrier (not)? Trends Immunol 2007;28:5–11 doi:10.1016/j.it.2006.11.007 pmid:17140851
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Iliff JJ,
    2. Wang M,
    3. Zeppenfeld DM, et al
    . Cerebral arterial pulsation drives paravascular CSF–interstitial fluid exchange in the murine brain. J Neurosci 2013;33:18190–99 doi:10.1523/JNEUROSCI.1592-13.2013 pmid:24227727
    Abstract/FREE Full Text
  31. 31.↵
    1. Caunca MR,
    2. De Leon-Benedetti A,
    3. Latour L, et al
    . Neuroimaging of cerebral small vessel disease and age-related cognitive changes. Front Aging Neurosci 2019;11:145 doi:10.3389/fnagi.2019.00145 pmid:31316367
    CrossRefPubMed
  32. 32.↵
    1. Das AS,
    2. Regenhardt RW,
    3. Vernooij MW, et al
    . Asymptomatic cerebral small vessel disease: insights from population-based studies. J Stroke 2019;21:121–38 doi:10.5853/jos.2018.03608 pmid:30991799
    CrossRefPubMed
  33. 33.↵
    1. Charidimou A,
    2. Martinez-Ramirez S,
    3. Reijmer YD, et al
    . Total magnetic resonance imaging burden of small vessel disease in cerebral amyloid angiopathy: an imaging-pathologic study of concept validation. JAMA Neurol 2016;73:994–1001 doi:10.1001/jamaneurol.2016.0832 pmid:27366898
    CrossRefPubMed
  34. 34.↵
    1. Fazekas F,
    2. Chawluk J,
    3. Alavi A, et al
    . MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 1987;149:351–56 doi:10.2214/ajr.149.2.351 pmid:3496763
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Zhu YC,
    2. Chabriat H,
    3. Godin O, et al
    . Distribution of white matter hyperintensity in cerebral hemorrhage and healthy aging. J Neurol 2012;259:530–36 doi:10.1007/s00415-011-6218-3 pmid:21877206
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Passiak BS,
    2. Liu D,
    3. Kresge HA, et al
    . Perivascular spaces contribute to cognition beyond other small vessel disease markers. Neurology 2019;92:e1309–21 doi:10.1212/WNL.0000000000007124 pmid:30814324
    Abstract/FREE Full Text
  37. 37.↵
    1. Gregoire SM,
    2. Chaudhary UJ,
    3. Brown MM, et al
    . The Microbleed Anatomical Rating Scale (MARS). Neurology 2009;73:1759–66 doi:10.1212/WNL.0b013e3181c34a7d pmid:19933977
    Abstract/FREE Full Text
  38. 38.↵
    1. Cordonnier C,
    2. Potter GM,
    3. Jackson CA, et al
    . Improving interrater agreement about brain microbleeds. Stroke 2009;40:94–99 doi:10.1161/STROKEAHA.108.526996 pmid:19008468
    Abstract/FREE Full Text
  39. 39.↵
    1. Dou Q,
    2. Chen H,
    3. Yu L, et al
    . Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans Med Imaging 2016;35:1182–95 doi:10.1109/TMI.2016.2528129 pmid:26886975
    CrossRefPubMed
  40. 40.↵
    1. Staals J,
    2. Makin SD,
    3. Doubal FN, et al
    . Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden. Neurology 2014;83:1228–34 doi:10.1212/WNL.0000000000000837 pmid:25165388
    Abstract/FREE Full Text
  41. 41.↵
    1. Banerjee G,
    2. Jang H,
    3. Kim HJ, et al
    . Total MRI small vessel disease burden correlates with cognitive performance, cortical atrophy, and network measures in a memory clinic population. J Alzheimers Dis 2018;63:1485–97 doi:10.3233/JAD-170943 pmid:29843234
    CrossRefPubMed
  42. 42.↵
    1. Klarenbeek P,
    2. van Oostenbrugge RJ,
    3. Rouhl RPW, et al
    . Ambulatory blood pressure in patients with lacunar stroke. Stroke 2013;44:2995–99 doi:10.1161/STROKEAHA.113.002545 pmid:23982717
    Abstract/FREE Full Text
  43. 43.↵
    1. Pasi M,
    2. Boulouis G,
    3. Fotiadis P, et al
    . Distribution of lacunes in cerebral amyloid angiopathy and hypertensive small vessel disease. Neurology 2017;88:2162–68 doi:10.1212/WNL.0000000000004007 pmid:28476760
    Abstract/FREE Full Text
  44. 44.↵
    1. Shams S,
    2. Martola J,
    3. Charidimou A, et al
    . Topography and determinants of magnetic resonance imaging (MRI)‐visible perivascular spaces in a large memory clinic cohort. J Am Heart Assoc 2017;6:e006229 doi:10.1161/JAHA.117.006279 pmid:28939709
    CrossRefPubMed
  45. 45.↵
    1. Duering M,
    2. Righart R,
    3. Wollenweber FA, et al
    . Acute infarcts cause focal thinning in remote cortex via degeneration of connecting fiber tracts. Neurology 2015;84:1685–92 doi:10.1212/WNL.0000000000001502
    Abstract/FREE Full Text
  46. 46.↵
    1. Dickie DA,
    2. Karama S,
    3. Ritchie SJ, et al
    . Progression of white matter disease and cortical thinning are not related in older community-dwelling subjects. Stroke 2016;47:410–16 doi:10.1161/STROKEAHA.115.011229 pmid:26696646
    Abstract/FREE Full Text
  47. 47.↵
    1. Ter Telgte A,
    2. van Leijsen EM,
    3. Wiegertjes K, et al
    . Cerebral small vessel disease: from a focal to a global perspective. Nat Rev Neurol 2018;14:387–98 doi:10.1038/s41582-018-0014-y pmid:29802354
    CrossRefPubMed
  48. 48.↵
    1. Peres R,
    2. De Guio F,
    3. Chabriat H, et al
    . Alterations of the cerebral cortex in sporadic small vessel disease: a systematic review of in vivo MRI data. J Cereb Blood Flow Metab 2016;36:681–95 doi:10.1177/0271678X15625352 pmid:26787108
    CrossRefPubMed
  49. 49.↵
    1. Chabriat H,
    2. Hervé D,
    3. Duering M, et al
    . Predictors of clinical worsening in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 2016;47:4–11 doi:10.1161/STROKEAHA.115.010696 pmid:26578659
    Abstract/FREE Full Text
  50. 50.↵
    1. Rizvi B,
    2. Narkhede A,
    3. Last BS, et al
    . The effect of white matter hyperintensities on cognition is mediated by cortical atrophy. Neurobiol Aging 2018;64:25–32 doi:10.1016/j.neurobiolaging.2017.12.006 pmid:29328963
    CrossRefPubMed
  51. 51.↵
    1. Charidimou A,
    2. Imaizumi T,
    3. Moulin S, et al
    . Brain hemorrhage recurrence, small vessel disease type, and cerebral microbleeds: a meta-analysis. Neurology 2017;89:820–29 doi:10.1212/WNL.0000000000004259 pmid:28747441
    Abstract/FREE Full Text
  52. 52.↵
    1. van der Holst HM,
    2. De Leeuw FE
    . Author response. Neurology 2016;86:1268–69 doi:10.1212/WNL.0000000000002554 pmid:27022177
    FREE Full Text
  53. 53.↵
    1. Gouw AA,
    2. Seewann A,
    3. van der Flier WM, et al
    . Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry 2011;82:126–35 doi:10.1136/jnnp.2009.204685 pmid:20935330
    Abstract/FREE Full Text
  54. 54.↵
    1. van Rooden S,
    2. Goos JD,
    3. van Opstal AM, et al
    . Increased number of microinfarcts in Alzheimer disease at 7-T MR imaging. Radiology 2014;270:205–11 doi:10.1148/radiol.13130743
    CrossRefPubMed
  55. 55.↵
    1. Coban H,
    2. Tung S,
    3. Yoo B, et al
    . Molecular disorganization of axons adjacent to human cortical microinfarcts. Front Neurol 2017;8:405 doi:10.3389/fneur.2017.00405 pmid:28861035
    CrossRefPubMed
  56. 56.↵
    1. Rubinov M,
    2. Sporns O
    . Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2010;52:1059–69 doi:10.1016/j.neuroimage.2009.10.003 pmid:19819337
    CrossRefPubMedWeb of Science
  57. 57.↵
    1. Lawrence AJ,
    2. Chung AW,
    3. Morris RG, et al
    . Structural network efficiency is associated with cognitive impairment in small-vessel disease. Neurology 2014;83:304–11 doi:10.1212/WNL.0000000000000612 pmid:24951477
    CrossRefPubMedWeb of Science
  58. 58.↵
    1. Marebwa BK,
    2. Adams RJ,
    3. Magwood GS, et al
    . Cardiovascular risk factors and brain health: impact on long-range cortical connections and cognitive performance. J Am Heart Assoc 2018;7:e010054 doi:10.1161/JAHA.118.010054 pmid:30520672
    CrossRefPubMed
  59. 59.↵
    1. Ogawa S,
    2. Tank DW,
    3. Menon R, et al
    . Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 1992;89:5951–55 doi:10.1073/pnas.89.13.5951 pmid:1631079
    Abstract/FREE Full Text
  60. 60.↵
    1. Blair GW,
    2. Thrippleton MJ,
    3. Shi Y, et al
    . Intracranial hemodynamic relationships in patients with cerebral small vessel disease. Neurology 2020;94:e2258–69 doi:10.1212/WNL.0000000000009483 pmid:32366534
    Abstract/FREE Full Text
  61. 61.↵
    1. Aghilinejad A,
    2. Amlani F,
    3. King KS, et al
    . Dynamic effects of aortic arch stiffening on pulsatile energy transmission to cerebral vasculature as a determinant of brain-heart coupling. Sci Rep 2020;10:8784 doi:10.1038/s41598-020-65616-7 pmid:32472027
    CrossRefPubMed
  62. 62.↵
    1. Papma JM,
    2. den Heijer T,
    3. de Koning I, et al
    . The influence of cerebral small vessel disease on default mode network deactivation in mild cognitive impairment. Neuroimage Clin 2012;2:33–42 doi:10.1016/j.nicl.2012.11.005 pmid:24179756
    CrossRefPubMed
  63. 63.↵
    1. Schaefer A,
    2. Quinque EM,
    3. Kipping JA, et al
    . Early small vessel disease affects frontoparietal and cerebellar hubs in close correlation with clinical symptoms: a resting-state fMRI study. J Cereb Blood Flow Metab 2014;34:1091–95 doi:10.1038/jcbfm.2014.70 pmid:24780899
    CrossRefPubMed
  64. 64.↵
    1. Li Y,
    2. Li M,
    3. Zuo L, et al
    . Compromised blood-brain barrier integrity is associated with total magnetic resonance imaging burden of cerebral small vessel disease. Front Neurol 2018;9:221 doi:10.3389/fneur.2018.00221 pmid:29681883
    CrossRefPubMed
  65. 65.↵
    1. Heye AK,
    2. Thrippleton MJ,
    3. Armitage PA, et al
    . Tracer kinetic modelling for DCE-MRI quantification of subtle blood-brain barrier permeability. Neuroimage 2016;125:446–55 doi:10.1016/j.neuroimage.2015.10.018 pmid:26477653
    CrossRefPubMed
  66. 66.↵
    1. Topakian R,
    2. Barrick TR,
    3. Howe FA, et al
    . Blood-brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leukoaraiosis. J Neurol Neurosurg Psychiatry 2010;81:192–97 doi:10.1136/jnnp.2009.172072 pmid:19710048
    Abstract/FREE Full Text
  67. 67.↵
    1. Wardlaw JM,
    2. Doubal FN,
    3. Valdes-Hernandez M, et al
    . Blood–brain barrier permeability and long-term clinical and imaging outcomes in cerebral small vessel disease. Stroke 2013;44:525–27 doi:10.1161/STROKEAHA.112.669994 pmid:23233386
    Abstract/FREE Full Text
  68. 68.↵
    1. Hendrikse J,
    2. Petersen ET,
    3. Golay X
    . Vascular disorders: insights from arterial spin-labeling. Neuroimaging Clin N Am 2012;22:259–69 doi:10.1016/j.nic.2012.02.003 pmid:22548931
    CrossRefPubMed
  69. 69.↵
    1. Sun Y,
    2. Cao W,
    3. Ding W, et al
    . Cerebral blood flow alterations as assessed by 3D ASL in cognitive impairment in patients with subcortical vascular cognitive impairment: a marker for disease severity. Front Aging Neurosci 2016;8:211 doi:10.3389/fnagi.2016.00211 pmid:27630562
    CrossRefPubMed
  70. 70.↵
    1. Mandell DM,
    2. Mossa-Basha M,
    3. Qiao Y, et al
    ; Vessel Wall Imaging Study Group of the American Society of Neuroradiology. Intracranial vessel wall MRI: Principles and Expert Consensus Recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol 2017;38:218–29 doi:10.3174/ajnr.A4893 pmid:27469212
    Abstract/FREE Full Text
  71. 71.↵
    1. Lindenholz A,
    2. van der Kolk AG,
    3. Zwanenburg JJM, et al
    . The use and pitfalls of intracranial vessel wall imaging: how we do it. Radiology 2018;286:12–28 doi:10.1148/radiol.2017162096 pmid:29261469
    CrossRefPubMed
  72. 72.↵
    1. Farag S,
    2. El-Dien HZ,
    3. Abdelazeem Y, et al
    . Value of vessel wall magnetic resonance imaging in the diagnosis of cerebrovascular diseases. Egypt J Neurol Psychiatry Neurosurg 2020;56:114 doi:10.1186/s41983-020-00241-9
    CrossRef
  73. 73.↵
    1. Zwartbol MH,
    2. van der Kolk AG,
    3. Kuijf HJ, et al
    ; UCC-SMART Study Group. Intracranial vessel wall lesions on 7T MRI and MRI features of cerebral small vessel disease: the SMART-MR study. J Cereb Blood Flow Metab 2021;41:1219–28 doi:10.1177/0271678X20958517 pmid:33023386
    CrossRefPubMed
  74. 74.↵
    1. Mårtensson G,
    2. Ferreira D,
    3. Cavallin L, et al
    ; Alzheimer’s Disease Neuroimaging Initiative. AVRA: Automatic visual ratings of atrophy from MRI images using recurrent convolutional neural networks. Neuroimage Clin 2019;23:101872 doi:10.1016/j.nicl.2019.101872 pmid:31154242
    CrossRefPubMed
  75. 75.↵
    1. Chen L,
    2. Carlton Jones AL,
    3. Mair G, et al
    ; IST-3 Collaborative Group. Rapid automated quantification of cerebral leukoaraiosis on CT images: a multicenter validation study. Radiology 2018;288:573–81 doi:10.1148/radiol.2018171567 pmid:29762091
    CrossRefPubMed
  76. 76.↵
    1. Rachmadi MF,
    2. Valdés-Hernández M del C,
    3. Makin S, et al
    . Automatic spatial estimation of white matter hyperintensities evolution in brain MRI using disease evolution predictor deep neural networks. April 21, 2020. bioRxiv. https://www.biorxiv.org/content/10.1101/738641v3. Accessed April 21, 2020
  77. 77.↵
    1. Schirmer MD,
    2. Dalca AV,
    3. Sridharan R, et al
    . White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts: the MRI-GENIE study. Neuroimage Clin 2019;23:101884 doi:10.1016/j.nicl.2019.101884 pmid:31200151
    CrossRefPubMed
  78. 78.↵
    1. Jiang J,
    2. Liu T,
    3. Zhu W, et al
    . UBO Detector: a cluster-based, fully automated pipeline for extracting white matter hyperintensities. Neuroimage 2018;174:539–49 doi:10.1016/j.neuroimage.2018.03.050 pmid:29578029
    CrossRefPubMed
  79. 79.↵
    1. Schmidt P,
    2. Pongratz V,
    3. Küster P, et al
    . Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging. Neuroimage Clin 2019;23:101849 doi:10.1016/j.nicl.2019.101849 pmid:31085465
    CrossRefPubMed
  80. 80.↵
    1. Dubost F,
    2. Yilmaz P,
    3. Adams H, et al
    . Enlarged perivascular spaces in brain MRI: Automated quantification in four regions. Neuroimage 2019;185:534–44 doi:10.1016/j.neuroimage.2018.10.026 pmid:30326293
    CrossRefPubMed
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Small Vessel Disease, a Marker of Brain Health: What the Radiologist Needs to Know
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
A. Mahammedi, L.L. Wang, B.J. Williamson, P. Khatri, B. Kissela, R.P. Sawyer, R. Shatz, V. Khandwala, A. Vagal
Small Vessel Disease, a Marker of Brain Health: What the Radiologist Needs to Know
American Journal of Neuroradiology Oct 2021, DOI: 10.3174/ajnr.A7302

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Small Vessel Disease, a Marker of Brain Health: What the Radiologist Needs to Know
A. Mahammedi, L.L. Wang, B.J. Williamson, P. Khatri, B. Kissela, R.P. Sawyer, R. Shatz, V. Khandwala, A. Vagal
American Journal of Neuroradiology Oct 2021, DOI: 10.3174/ajnr.A7302
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Conclusions and Future Directions
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Arterial Spin-Labeling MRI Identifies Abnormal Perfusion Metric at the Gray Matter/CSF Interface in Cerebral Small Vessel Disease
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Arteries
  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Veins
  • Clinical Translation of Hyperpolarized 13C Metabolic Probes for Glioma Imaging
Show more Review Articles

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire