Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain
Open Access

Tissue at Risk and Ischemic Core Estimation Using Deep Learning in Acute Stroke

Y. Yu, Y. Xie, T. Thamm, E. Gong, J. Ouyang, S. Christensen, M.P. Marks, M.G. Lansberg, G.W. Albers and G. Zaharchuk
American Journal of Neuroradiology March 2021, DOI: https://doi.org/10.3174/ajnr.A7081
Y. Yu
aFrom the Departments of Radiology (Y.Y., Y.X., T.T., M.P.M., G.Z.), Electrical Engineering (E.G., J.O.), and Neurology (S.C., M.G.L., G.W.A.), Stanford University, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Yu
Y. Xie
aFrom the Departments of Radiology (Y.Y., Y.X., T.T., M.P.M., G.Z.), Electrical Engineering (E.G., J.O.), and Neurology (S.C., M.G.L., G.W.A.), Stanford University, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Xie
T. Thamm
aFrom the Departments of Radiology (Y.Y., Y.X., T.T., M.P.M., G.Z.), Electrical Engineering (E.G., J.O.), and Neurology (S.C., M.G.L., G.W.A.), Stanford University, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Thamm
E. Gong
aFrom the Departments of Radiology (Y.Y., Y.X., T.T., M.P.M., G.Z.), Electrical Engineering (E.G., J.O.), and Neurology (S.C., M.G.L., G.W.A.), Stanford University, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E. Gong
J. Ouyang
aFrom the Departments of Radiology (Y.Y., Y.X., T.T., M.P.M., G.Z.), Electrical Engineering (E.G., J.O.), and Neurology (S.C., M.G.L., G.W.A.), Stanford University, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Ouyang
S. Christensen
aFrom the Departments of Radiology (Y.Y., Y.X., T.T., M.P.M., G.Z.), Electrical Engineering (E.G., J.O.), and Neurology (S.C., M.G.L., G.W.A.), Stanford University, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Christensen
M.P. Marks
aFrom the Departments of Radiology (Y.Y., Y.X., T.T., M.P.M., G.Z.), Electrical Engineering (E.G., J.O.), and Neurology (S.C., M.G.L., G.W.A.), Stanford University, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.P. Marks
M.G. Lansberg
aFrom the Departments of Radiology (Y.Y., Y.X., T.T., M.P.M., G.Z.), Electrical Engineering (E.G., J.O.), and Neurology (S.C., M.G.L., G.W.A.), Stanford University, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.G. Lansberg
G.W. Albers
aFrom the Departments of Radiology (Y.Y., Y.X., T.T., M.P.M., G.Z.), Electrical Engineering (E.G., J.O.), and Neurology (S.C., M.G.L., G.W.A.), Stanford University, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G.W. Albers
G. Zaharchuk
aFrom the Departments of Radiology (Y.Y., Y.X., T.T., M.P.M., G.Z.), Electrical Engineering (E.G., J.O.), and Neurology (S.C., M.G.L., G.W.A.), Stanford University, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Zaharchuk
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Albers GW,
    2. Marks MP,
    3. Kemp S, et al
    . DEFUSE 3 Investigators. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 2018;378:708–18 doi:10.1056/NEJMoa1713973 pmid:29364767
    CrossRefPubMed
  2. 2.↵
    1. Ma H,
    2. Campbell BC,
    3. Parsons MW, et al
    . EXTEND Investigators. Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med 2019;380:1795–1803 doi:10.1056/NEJMoa1813046 pmid:31067369
    CrossRefPubMed
  3. 3.↵
    1. Campbell BC,
    2. Ma H,
    3. Ringleb PA, et al
    . EXTEND, ECASS-4, and EPITHET Investigators. Extending thrombolysis to 4.5-9 h and wake-up stroke using perfusion imaging: a systematic review and meta-analysis of individual patient data. Lancet 2019;394:139–47 doi:10.1016/S0140-6736(19)31053-0 pmid:31128925
    CrossRefPubMed
  4. 4.↵
    1. Albers GW,
    2. Lansberg MG,
    3. Kemp S, et al
    . A multicenter randomized controlled trial of endovascular therapy following imaging evaluation for ischemic stroke (DEFUSE 3). Int J Stroke 2017;12:896–905 doi:10.1177/1747493017701147 pmid:28946832
    CrossRefPubMed
  5. 5.↵
    1. Nagakane Y,
    2. Christensen S,
    3. Ogata T, et al
    . EPITHET Investigators. Moving beyond a single perfusion threshold to define penumbra: a novel probabilistic mismatch definition. Stroke 2012;43:1548–55 doi:10.1161/STROKEAHA.111.643932 pmid:22499579
    Abstract/FREE Full Text
  6. 6.↵
    1. McKinley R,
    2. Hani L,
    3. Gralla J, et al
    . Fully automated stroke tissue estimation using random forest classifiers (FASTER). J Cereb Blood Flow Metab 2017;37:2728–41 doi:10.1177/0271678X16674221 pmid:27798267
    CrossRefPubMed
  7. 7.↵
    1. Nielsen A,
    2. Hansen MB,
    3. Tietze A, et al
    . Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning. Stroke 2018;49:1394–1401 doi:10.1161/STROKEAHA.117.019740 pmid:29720437
    Abstract/FREE Full Text
  8. 8.↵
    1. Pinto A,
    2. McKinley R,
    3. Alves V, et al
    . Stroke lesion outcome prediction based on MRI imaging combined with clinical information. Front Neurol 2018;9:1060 doi:10.3389/fneur.2018.01060 pmid:30568631
    CrossRefPubMed
  9. 9.↵
    1. Stier N,
    2. Vincent N,
    3. Liebeskind D, et al
    . Deep learning of tissue fate features in acute ischemic stroke. Proceedings (IEEE Int Conf Bioinformatics Biomed) 2015;2015:1316–21 doi:10.1109/BIBM.2015.7359869 pmid:28919983
    CrossRefPubMed
  10. 10.↵
    1. Winder AJ,
    2. Siemonsen S,
    3. Flottmann F, et al
    . Comparison of classification methods for voxel-based prediction of acute ischemic stroke outcome following intra-arterial intervention. Proceedings of the SPIE 2017;10134:101344B doi:10.1117/12.2254118
    CrossRef
  11. 11.↵
    1. Yu Y,
    2. Guo D,
    3. Lou M, et al
    . Prediction of hemorrhagic transformation severity in acute stroke from source perfusion MRI. IEEE Trans Biomed Eng 2018;65:2058–65 doi:10.1109/TBME.2017.2783241 pmid:29989941
    CrossRefPubMed
  12. 12.↵
    1. Yu Y,
    2. Xie Y,
    3. Thamm T, et al
    . Use of deep learning to predict final ischemic stroke lesions from initial magnetic resonance imaging. JAMA Netw Open 2020;3:e200772 doi:10.1001/jamanetworkopen.2020.0772 pmid:32163165
    CrossRefPubMed
  13. 13.↵
    1. McKinley R,
    2. Hung F,
    3. Wiest R, et al
    . A machine learning approach to perfusion imaging with dynamic susceptibility contrast MR. Front Neurol 2018;9:717 doi:10.3389/fneur.2018.00717 pmid:30233482
    CrossRefPubMed
  14. 14.↵
    1. Chilamkurthy S,
    2. Ghosh R,
    3. Tanamala S, et al
    . Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 2018;392:2388–96 doi:10.1016/S0140-6736(18)31645-3 pmid:30318264
    CrossRefPubMed
  15. 15.↵
    1. Wang K,
    2. Shou Q,
    3. Ma SJ, et al
    . Deep learning detection of penumbral tissue on arterial spin labeling in stroke. Stroke 2020;51:489–97 doi:10.1161/STROKEAHA.119.027457 pmid:31884904
    CrossRefPubMed
  16. 16.↵
    1. Robben D,
    2. Boers AM,
    3. Marquering HA, et al
    . Prediction of final infarct volume from native CT perfusion and treatment parameters using deep learning. Med Image Anal 2020;59:101589 doi:10.1016/j.media.2019.101589 pmid:31683091
    CrossRefPubMed
  17. 17.↵
    1. Navab N,
    2. Hornegger J, Well
    1. AN
    1. Ronneberger O,
    2. Fischer P,
    3. Brox T
    . U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N, Hornegger J, Well AN, et al, eds. Medical Image Computing and Computer-Assisted Intervention. Springer; 2015:9351
  18. 18.↵
    1. Howard AG
    . Some Improvements on Deep Convolutional Neural Network Based Image Classification. arXiv e-prints 2013. https://arxiv.org/abs/1312.5402. Accessed December 01, 2013
  19. 19.↵
    1. Zaharchuk G,
    2. Marks MP,
    3. Do HM, et al
    . Introducing the Imaging the Collaterals in Acute Stroke (iCAS) multicenter MRI trial. Stroke 2015;46 (Supple 1):AWMP16
  20. 20.↵
    1. Thamm T,
    2. Guo J,
    3. Rosenberg J, et al
    . iCAS Study Investigators. Contralateral hemispheric cerebral blood flow measured with arterial spin labeling can predict outcome in acute stroke. Stroke 2019;50:3408–15 doi:10.1161/STROKEAHA.119.026499 pmid:31619150
    CrossRefPubMed
  21. 21.↵
    1. Lansberg MG,
    2. Straka M,
    3. Kemp S, et al
    . DEFUSE 2 Study Investigators. MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study. Lancet Neurol 2012;11:860–67 doi:10.1016/S1474-4422(12)70203-X pmid:22954705
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Albers GW,
    2. Thijs VN,
    3. Wechsler L, et al
    . DEFUSE Investigators. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) study. Ann Neurol 2006;60:508–17 doi:10.1002/ana.20976 pmid:17066483
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Eilaghi A,
    2. Brooks J,
    3. d’Esterre C, et al
    . Reperfusion is a stronger predictor of good clinical outcome than recanalization in ischemic stroke. Radiology 2013;269:240–48 doi:10.1148/radiol.13122327 pmid:23716707
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Cho TH,
    2. Nighoghossian N,
    3. Mikkelsen IK, et al
    . Reperfusion within 6 hours outperforms recanalization in predicting penumbra salvage, lesion growth, final infarct, and clinical outcome. Stroke 2015;46:1582–89 doi:10.1161/STROKEAHA.114.007964 pmid:25908463
    Abstract/FREE Full Text
  25. 25.↵
    1. Bivard A,
    2. Levi C,
    3. Spratt N, et al
    . Perfusion CT in acute stroke: a comprehensive analysis of infarct and penumbra. Radiology 2013;267:543–50 doi:10.1148/radiol.12120971 pmid:23264345
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Yu Y,
    2. Han Q,
    3. Ding X, et al
    . Defining core and penumbra in ischemic stroke: a voxel- and volume-based analysis of whole brain CT perfusion. Sci Rep 2016;6:20932 doi:10.1038/srep20932 pmid:26860196
    CrossRefPubMed
  27. 27.↵
    1. Purushotham A,
    2. Campbell BC,
    3. Straka M, et al
    . Apparent diffusion coefficient threshold for delineation of ischemic core. Int J Stroke 2015;10:348–53 doi:10.1111/ijs.12068 pmid:23802548
    CrossRefPubMed
  28. 28.↵
    1. Mukaka MM
    . Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J 2012;24:69–71 pmid:23638278
    PubMedWeb of Science
  29. 29.↵
    1. Olivot JM,
    2. Mlynash M,
    3. Thijs VN, et al
    . Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke 2009;40:469–75 doi:10.1161/STROKEAHA.108.526954 pmid:19109547
    Abstract/FREE Full Text
  30. 30.↵
    1. Murphy BD,
    2. Fox AJ,
    3. Lee DH, et al
    . White matter thresholds for ischemic penumbra and infarct core in patients with acute stroke: CT perfusion study. Radiology 2008;247:818–25 doi:10.1148/radiol.2473070551 pmid:18424687
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Campbell BC,
    2. Mitchell PJ,
    3. Kleinig TJ, et al
    . Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 2015;372:1009–18 doi:10.1056/NEJMoa1414792 pmid:25671797
    CrossRefPubMed
  32. 32.↵
    1. Berkhemer OA,
    2. Fransen PS,
    3. Beumer D
    , et al. MR CLEAN Investigators. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 2015;372:11–20 doi:10.1056/NEJMoa1411587 pmid:25517348
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Yosinski J,
    2. Clune J,
    3. Bengio Y, et al
    . How transferable are features in deep neural networks? In: Proceedings of the 27th International Conference on Neural Information Processing Systems, ACM Digital Library 2014:3320–28
  34. 34.↵
    1. Tajbakhsh N,
    2. Shin JY,
    3. Gurudu SR, et al
    . Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 2016;35:1299–1312 doi:10.1109/TMI.2016.2535302 pmid:26978662
    CrossRefPubMed
  35. 35.↵
    1. Raghu M,
    2. Zhang C,
    3. Kleinberg J, et al
    . Transfusion: Understanding Transfer Learning for Medical Imaging. arXiv.org 2019. https://arxiv.org/abs/1902.07208. Accessed Februrary 01, 2019
  36. 36.↵
    1. Qiao Y,
    2. Zhu G,
    3. Patrie J, et al
    . Optimal perfusion computed tomographic thresholds for ischemic core and penumbra are not time dependent in the clinically relevant time window. Stroke 2014;45:1355–62 doi:10.1161/STROKEAHA.113.003362 pmid:24627117
    Abstract/FREE Full Text
  37. 37.↵
    1. d’Esterre CD,
    2. Boesen ME,
    3. Ahn SH, et al
    . Time-dependent computed tomographic perfusion thresholds for patients with acute ischemic stroke. Stroke 2015;46:3390–97 doi:10.1161/STROKEAHA.115.009250 pmid:26514186
    Abstract/FREE Full Text
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Tissue at Risk and Ischemic Core Estimation Using Deep Learning in Acute Stroke
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Y. Yu, Y. Xie, T. Thamm, E. Gong, J. Ouyang, S. Christensen, M.P. Marks, M.G. Lansberg, G.W. Albers, G. Zaharchuk
Tissue at Risk and Ischemic Core Estimation Using Deep Learning in Acute Stroke
American Journal of Neuroradiology Mar 2021, DOI: 10.3174/ajnr.A7081

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Tissue at Risk and Ischemic Core Estimation Using Deep Learning in Acute Stroke
Y. Yu, Y. Xie, T. Thamm, E. Gong, J. Ouyang, S. Christensen, M.P. Marks, M.G. Lansberg, G.W. Albers, G. Zaharchuk
American Journal of Neuroradiology Mar 2021, DOI: 10.3174/ajnr.A7081
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Deep learning-based detection and segmentation of diffusion abnormalities in acute ischemic stroke
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

Adult Brain

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Functional

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Multiparametric MRI in PEDS Pontine Glioma
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire