Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates


Improved Turnaround Times | Median time to first decision: 12 days

Research ArticleUltra-High-Field MRI/Imaging of Epilepsy/Demyelinating Diseases/Inflammation/Infection

Dynamic Expansion and Contraction of Multiple Sclerosis T2-Weighted Hyperintense Lesions Are Present below the Threshold of Visual Perception

Darin T. Okuda, Tatum M. Moog, Morgan McCreary, Kevin Shan, Kasia Zubkow, Braeden D. Newton, Alexander D. Smith, Mahi A. Patel, Katy W. Burgess and Christine Lebrun-Frénay
American Journal of Neuroradiology February 2025, 46 (2) 443-450; DOI: https://doi.org/10.3174/ajnr.A8453
Darin T. Okuda
aFrom the Department of Neurology, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program (D.T.O., T.M.M., M.M., M.A.P., K.W.B.), The University of Texas Southwestern Medical Center, Dallas, Texas
bPeter O’Donnell Jr. Brain Institute (D.T.O., T.M.M., M.M., M.A.P., K.W.B.), The University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Darin T. Okuda
Tatum M. Moog
aFrom the Department of Neurology, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program (D.T.O., T.M.M., M.M., M.A.P., K.W.B.), The University of Texas Southwestern Medical Center, Dallas, Texas
bPeter O’Donnell Jr. Brain Institute (D.T.O., T.M.M., M.M., M.A.P., K.W.B.), The University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Tatum M. Moog
Morgan McCreary
aFrom the Department of Neurology, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program (D.T.O., T.M.M., M.M., M.A.P., K.W.B.), The University of Texas Southwestern Medical Center, Dallas, Texas
bPeter O’Donnell Jr. Brain Institute (D.T.O., T.M.M., M.M., M.A.P., K.W.B.), The University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Morgan McCreary
Kevin Shan
cSchool of Medicine (K.S.), The University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kevin Shan
Kasia Zubkow
dDivision of Neurology (K.Z.), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kasia Zubkow
Braeden D. Newton
eDivision of Neurosurgery (B.D.N.), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Braeden D. Newton
Alexander D. Smith
fSchool of Medicine (A.D.S), Texas Tech University Health Sciences Center, Lubbock, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Alexander D. Smith
Mahi A. Patel
aFrom the Department of Neurology, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program (D.T.O., T.M.M., M.M., M.A.P., K.W.B.), The University of Texas Southwestern Medical Center, Dallas, Texas
bPeter O’Donnell Jr. Brain Institute (D.T.O., T.M.M., M.M., M.A.P., K.W.B.), The University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Mahi A. Patel
Katy W. Burgess
aFrom the Department of Neurology, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program (D.T.O., T.M.M., M.M., M.A.P., K.W.B.), The University of Texas Southwestern Medical Center, Dallas, Texas
bPeter O’Donnell Jr. Brain Institute (D.T.O., T.M.M., M.M., M.A.P., K.W.B.), The University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christine Lebrun-Frénay
gCRCSEP (C.L-F., Université Nice Cote d’Azur, Nice, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Lebrun-Frenay C,
    2. Kantarci O,
    3. Siva A, et al
    . Radiologically isolated syndrome. Lancet Neurol 2023;22:1075–86 doi:10.1016/S1474-4422(23)00281-8 pmid:37839432
    CrossRefPubMed
  2. 2.↵
    1. Filippi M,
    2. Preziosa P,
    3. Banwell BL, et al
    . Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain 2019;142:1858–75 doi:10.1093/brain/awz144 pmid:31209474
    CrossRefPubMed
  3. 3.↵
    1. McFarland HF,
    2. Frank JA,
    3. Albert PS, et al
    . Using gadolinium-enhanced magnetic resonance imaging lesions to monitor disease activity in multiple sclerosis. Ann Neurol 1992;32:758–66 doi:10.1002/ana.410320609 pmid:1471866
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Okuda DT,
    2. Moog TM,
    3. McCreary M, et al
    . Utility of shape evolution and displacement in the classification of chronic multiple sclerosis lesions. Sci Rep 2020;10:19560 doi:10.1038/s41598-020-76420-8 pmid:33177565
    CrossRefPubMed
  5. 5.↵
    1. Trapp BD,
    2. Peterson J,
    3. Ransohoff RM, et al
    . Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998;338:278–85 doi:10.1056/NEJM199801293380502 pmid:9445407
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Comi G,
    2. Kappos L,
    3. Selmaj KW, et al
    ; SUNBEAM Study Investigators. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM): a multicentre, randomised, minimum 12-month, phase 3 trial. Lancet Neurol 2019;18:1009–20 doi:10.1016/S1474-4422(19)30239-X pmid:31492651
    CrossRefPubMed
  7. 7.↵
    1. Cohen JA,
    2. Comi G,
    3. Selmaj KW, et al
    ; RADIANCE Trial Investigators. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): a multicentre, randomised, 24-month, phase 3 trial. Lancet Neurol 2019;18:1021–33 doi:10.1016/S1474-4422(19)30238-8 pmid:31492652
    CrossRefPubMed
  8. 8.↵
    1. Hauser SL,
    2. Bar-Or A,
    3. Cohen JA, et al
    ; ASCLEPIOS I and ASCLEPIOS II Trial Groups. Ofatumumab versus teriflunomide in multiple sclerosis. N Engl J Med 2020;383:546–57 doi:10.1056/NEJMoa1917246 pmid:32757523
    CrossRefPubMed
  9. 9.↵
    1. Steinman L,
    2. Fox E,
    3. Hartung HP, et al
    ; ULTIMATE I and ULTIMATE II Investigators. Ublituximab versus teriflunomide in relapsing multiple sclerosis. N Engl J Med 2022;387:704–14 doi:10.1056/NEJMoa2201904 pmid:36001711
    CrossRefPubMed
  10. 10.↵
    1. Sivakolundu DK,
    2. Hansen MR,
    3. West KL, et al
    . Three-dimensional lesion phenotyping and physiologic characterization inform remyelination ability in multiple sclerosis. J Neuroimaging 2019;29:605–14 doi:10.1111/jon.12633 pmid:31148298
    CrossRefPubMed
  11. 11.↵
    1. Sivakolundu DK,
    2. West KL,
    3. Zuppichini MD, et al
    . BOLD signal within and around white matter lesions distinguishes multiple sclerosis and non-specific white matter disease: a three-dimensional approach. J Neurol 2020;267:2888–96 doi:10.1007/s00415-020-09923-z pmid:32468116
    CrossRefPubMed
  12. 12.↵
    1. Moog TM,
    2. McCreary M,
    3. Stanley T, et al
    . African Americans experience disproportionate neurodegenerative changes in the medulla and upper cervical spinal cord in early multiple sclerosis. Mult Scler Relat Disord 2020;45:102429 doi:10.1016/j.msard.2020.102429 pmid:32805478
    CrossRefPubMed
  13. 13.↵
    1. Moog TM,
    2. McCreary M,
    3. Wilson A, et al
    . Direction and magnitude of displacement differ between slowly expanding and non-expanding multiple sclerosis lesions as compared to small vessel disease. J Neurol 2022;269:4459–68 doi:10.1007/s00415-022-11089-9 pmid:35380254
    CrossRefPubMed
  14. 14.↵
    1. Okuda DT,
    2. Stanley T,
    3. McCreary M, et al
    . Selective vulnerability of brainstem and cervical spinal cord regions in people with non-progressive multiple sclerosis of Black or African American and European ancestry. Mult Scler 2022;29:691–701 doi:10.1177/13524585221139575 pmid:36507671
    CrossRefPubMed
  15. 15.↵
    1. Okuda DT,
    2. Stanley T,
    3. McCreary M, et al
    . Dorsal medulla surface texture: differentiating neuromyelitis optica spectrum disorder from multiple sclerosis. J Neuroimaging 2022;32:1090–97 doi:10.1111/jon.13059 pmid:36181675
    CrossRefPubMed
  16. 16.↵
    1. Nyul LG,
    2. Udupa JK,
    3. Zhang X
    . New variants of a method of MRI scale standardization. IEEE Trans Med Imaging 2000;19:143–50 doi:10.1109/42.836373 pmid:10784285
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Caselles V,
    2. Kimmel R,
    3. Sapiro G
    . Geodesic active contours. Int J Comput Vis 1997;22:61–79 doi:10.1023/A:1007979827043
    CrossRef
  18. 18.↵
    1. Cole TJ
    . The LMS method for constructing normalized growth standards. Eur J Clin Nutr 1990;44:45–60 pmid:2354692
    PubMedWeb of Science
  19. 19.↵
    1. Cole TJ
    . Fitting smoothed centile curves to reference data. J R Stat Soc Ser A Stat Soc 1988;151:385–418 doi:10.2307/2982992
    CrossRef
  20. 20.↵
    1. Hothorn T,
    2. Bretz F,
    3. Westfall P
    . Simultaneous inference in general parametric models. Biom J 2008;50:346–63 doi:10.1002/bimj.200810425 pmid:18481363
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Klistorner S,
    2. Barnett MH,
    3. Graham SL, et al
    . The expansion and severity of chronic MS lesions follows a periventricular gradient. Mult Scler 2022;28:1504–14 doi:10.1177/13524585221080667 pmid:35296170
    CrossRefPubMed
  22. 22.↵
    1. Fisniku LK,
    2. Brex PA,
    3. Altmann DR, et al
    . Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain 2008;131:808–17 doi:10.1093/brain/awm329 pmid:18234696
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Moraal B,
    2. Meier DS,
    3. Poppe PA, et al
    . Subtraction MR images in a multiple sclerosis multicenter clinical trial setting. Radiology 2009;250:506–14 doi:10.1148/radiol.2501080480 pmid:19037018
    CrossRefPubMed
  24. 24.↵
    1. Rahmanzadeh R,
    2. Galbusera R,
    3. Lu PJ, et al
    . A new advanced MRI biomarker for remyelinated lesions in multiple sclerosis. Ann Neurol 2022;92:486–502 doi:10.1002/ana.26441 pmid:35713309
    CrossRefPubMed
  25. 25.↵
    1. Klistorner S,
    2. Barnett MH,
    3. Parratt J, et al
    . Choroid plexus volume in multiple sclerosis predicts expansion of chronic lesions and brain atrophy. Ann Clin Transl Neurol 2022;9:1528–37 doi:10.1002/acn3.51644 pmid:36056634
    CrossRefPubMed
  26. 26.↵
    1. Huynh TN,
    2. Johnson T,
    3. Poder L, et al
    . T1 pseudohyperintensity on fat-suppressed magnetic resonance imaging: a potential diagnostic pitfall. J Comput Assist Tomogr 2011;35:459–61 doi:10.1097/RCT.0b013e31822227c3 pmid:21765301
    CrossRefPubMed
  27. 27.↵
    1. Adelson EH
    . Perceptual organization and the judgment of brightness. Science 1993;262:2042–44 doi:10.1126/science.8266102 pmid:8266102
    Abstract/FREE Full Text
  28. 28.↵
    1. Fiedler A,
    2. Moore CM
    . Illumination frame of reference in the object-reviewing paradigm: a case of luminance and lightness. J Exp Psychol Hum Percept Perform 2015;41:1709–17 doi:10.1037/xhp0000123 pmid:26280265
    CrossRefPubMed
  29. 29.↵
    1. Lotto RB,
    2. Williams SM,
    3. Purves D
    . Mach bands as empirically derived associations. Proc Natl Acad Sci U S A 1999;96:5245–50 doi:10.1073/pnas.96.9.5245 pmid:10220451
    Abstract/FREE Full Text
  30. 30.↵
    1. Panikkath R,
    2. Panikkath D
    . Mach band sign: an optical illusion. Proc (Bayl Univ Med Cent) 2014;27:364–65 doi:10.1080/08998280.2014.11929161 pmid:25484514
    CrossRefPubMed
  31. 31.↵
    1. Mazade R,
    2. Jin J,
    3. Rahimi-Nasrabadi H, et al
    . Cortical mechanisms of visual brightness. Cell Rep 2022;40:111438 doi:10.1016/j.celrep.2022.111438 pmid:36170812
    CrossRefPubMed
  32. 32.↵
    1. Roe AW,
    2. Lu HD,
    3. Hung CP
    . Cortical processing of a brightness illusion. Proc Natl Acad Sci U S A 2005;102:3869–74 doi:10.1073/pnas.0500097102 pmid:15738406
    Abstract/FREE Full Text
  33. 33.↵
    1. Albright TD,
    2. Stoner GR
    . Contextual influences on visual processing. Annu Rev Neurosci 2002;25:339–79 doi:10.1146/annurev.neuro.25.112701.142900 pmid:12052913
    CrossRefPubMedWeb of Science
  34. 34.↵
    The IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 1993;43:655 doi:10.1212/WNL.43.4.655
    Abstract/FREE Full Text
  35. 35.↵
    1. Jacobs LD,
    2. Cookfair DL,
    3. Rudick RA, et al
    . A phase III trial of intramuscular recombinant interferon beta as treatment for exacerbating-remitting multiple sclerosis: design and conduct of study and baseline characteristics of patients. Multiple Sclerosis Collaborative Research Group (MSCRG). Mult Scler 1995;1:118–35 doi:10.1177/135245859500100210 pmid:9345462
    CrossRefPubMed
  36. 36.↵
    1. Johnson KP,
    2. Brooks BR,
    3. Cohen JA, et al
    . Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 1995;45:1268–76 doi:10.1212/wnl.45.7.1268 pmid:7617181
    Abstract/FREE Full Text
  37. 37.↵
    Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group. Lancet 1998;352:1498–504
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Montalban X,
    2. Arnold DL,
    3. Weber MS, et al
    ; Evobrutinib Phase 2 Study Group. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N Engl J Med 2019;380:2406–17 doi:10.1056/NEJMoa1901981 pmid:31075187
    CrossRefPubMed
  39. 39.↵
    1. Reich DS,
    2. Arnold DL,
    3. Vermersch P, et al
    ; Tolebrutinib Phase 2b Study Group. Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: a phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2021;20:729–38 doi:10.1016/S1474-4422(21)00237-4 pmid:34418400
    CrossRefPubMed
  40. 40.↵
    1. Sweeney EM,
    2. Nguyen TD,
    3. Kuceyeski A, et al
    . Estimation of multiple sclerosis lesion age on magnetic resonance imaging. Neuroimage 2021;225:117451 doi:10.1016/j.neuroimage.2020.117451 pmid:33069865
    CrossRefPubMed
  41. 41.↵
    1. Weber CE,
    2. Wittayer M,
    3. Kraemer M, et al
    . Long-term dynamics of multiple sclerosis iron rim lesions. Mult Scler Relat Disord 2022;57:103340 doi:10.1016/j.msard.2021.103340 pmid:35158450
    CrossRefPubMed
  42. 42.↵
    1. Bagnato F,
    2. Sati P,
    3. Hemond CC, et al
    . Imaging chronic active lesions in multiple sclerosis: a consensus statement. Brain 2024;147:2913–33 doi:10.1093/brain/awae013 pmid:38226694
    CrossRefPubMed
  43. 43.↵
    1. Prineas JW,
    2. Connell F
    . Remyelination in multiple sclerosis. Ann Neurol 1979;5:22–31 doi:10.1002/ana.410050105 pmid:426466
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Kitzler HH,
    2. Wahl H,
    3. Kuntke P, et al
    . Exploring in vivo lesion myelination dynamics: longitudinal myelin water imaging in early multiple sclerosis. Neuroimage Clin 2022;36:103192 doi:10.1016/j.nicl.2022.103192 pmid:36162236
    CrossRefPubMed
  45. 45.↵
    1. Galbusera R,
    2. Bahn E,
    3. Weigel M, et al
    . Postmortem quantitative MRI disentangles histological lesion types in multiple sclerosis. Brain Pathol 2023;33:e13136 doi:10.1111/bpa.13136 pmid:36480267
    CrossRefPubMed
  46. 46.↵
    1. Hamzaoui M,
    2. Garcia J,
    3. Boffa G, et al
    . Positron emission tomography with [(18) F]-DPA-714 unveils a smoldering component in most multiple sclerosis lesions which drives disease progression. Ann Neurol 2023;94:366–83 doi:10.1002/ana.26657 pmid:37039158
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 46 (2)
American Journal of Neuroradiology
Vol. 46, Issue 2
1 Feb 2025
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Dynamic Expansion and Contraction of Multiple Sclerosis T2-Weighted Hyperintense Lesions Are Present below the Threshold of Visual Perception
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Darin T. Okuda, Tatum M. Moog, Morgan McCreary, Kevin Shan, Kasia Zubkow, Braeden D. Newton, Alexander D. Smith, Mahi A. Patel, Katy W. Burgess, Christine Lebrun-Frénay
Dynamic Expansion and Contraction of Multiple Sclerosis T2-Weighted Hyperintense Lesions Are Present below the Threshold of Visual Perception
American Journal of Neuroradiology Feb 2025, 46 (2) 443-450; DOI: 10.3174/ajnr.A8453

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Dynamic MS Lesion Changes Beyond Visual Perception
Darin T. Okuda, Tatum M. Moog, Morgan McCreary, Kevin Shan, Kasia Zubkow, Braeden D. Newton, Alexander D. Smith, Mahi A. Patel, Katy W. Burgess, Christine Lebrun-Frénay
American Journal of Neuroradiology Feb 2025, 46 (2) 443-450; DOI: 10.3174/ajnr.A8453
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Graphical Abstract
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Automated Lesion Segmentation Software in MS
  • Interpretation Errors in Adults with MRE
  • DL Image Reconstruction in T2-Weighted TSE at 7T
Show more Ultra-High-Field MRI/Imaging of Epilepsy/Demyelinating Diseases/Inflammation/Infection

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire