Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleArtificial Intelligence

Radiomics-Based Differentiation of Glioblastoma and Metastatic Disease: Impact of Different T1-Contrast-Enhanced Sequences on Radiomics Features and Model Performance

Girish Bathla, Camila G. Zamboni, Nicholas Larson, Yanan Liu, Honghai Zhang, Nam H. Lee, Amit Agarwal, Neetu Soni and Milan Sonka
American Journal of Neuroradiology February 2025, 46 (2) 321-329; DOI: https://doi.org/10.3174/ajnr.A8470
Girish Bathla
aFrom the Department of Radiology (G.B., C.G.Z.), University of Iowa Hospitals and Clinics, Iowa City, Iowa
bDivision of Neuroradiology (G.B.), Department of Radiology, Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Girish Bathla
Camila G. Zamboni
aFrom the Department of Radiology (G.B., C.G.Z.), University of Iowa Hospitals and Clinics, Iowa City, Iowa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Camila G. Zamboni
Nicholas Larson
cDivision of Clinical Trials and Biostatistics (N.L.), Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nicholas Larson
Yanan Liu
dCollege of Engineering (Y.L., H.Z., N.H.L., M.S.), University of Iowa, Iowa City, Iowa.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Honghai Zhang
dCollege of Engineering (Y.L., H.Z., N.H.L., M.S.), University of Iowa, Iowa City, Iowa.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Honghai Zhang
Nam H. Lee
dCollege of Engineering (Y.L., H.Z., N.H.L., M.S.), University of Iowa, Iowa City, Iowa.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nam H. Lee
Amit Agarwal
eDivision of Neuroradiology (A.A., N.S.), Department of Radiology, Mayo Clinic, Jacksonville, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Amit Agarwal
Neetu Soni
eDivision of Neuroradiology (A.A., N.S.), Department of Radiology, Mayo Clinic, Jacksonville, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Neetu Soni
Milan Sonka
dCollege of Engineering (Y.L., H.Z., N.H.L., M.S.), University of Iowa, Iowa City, Iowa.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Ostrom QT,
    2. Cioffi G,
    3. Gittleman H, et al
    . CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. Neuro Oncol 2019;21:v1–100 doi:10.1093/neuonc/noz150 pmid:31675094
    CrossRefPubMed
  2. 2.↵
    1. Priya S,
    2. Liu Y,
    3. Ward C, et al
    . Machine learning based differentiation of glioblastoma from brain metastasis using MRI derived radiomics. Sci Rep 2021;11:10478 doi:10.1038/s41598-021-90032-w pmid:34006893
    CrossRefPubMed
  3. 3.↵
    1. Bae S,
    2. An C,
    3. Ahn SS, et al
    . Robust performance of deep learning for distinguishing glioblastoma from single brain metastasis using radiomic features: model development and validation. Sci Rep 2020;10:12110 doi:10.1038/s41598-020-68980-6 pmid:32694637
    CrossRefPubMed
  4. 4.↵
    1. Cagney DN,
    2. Martin AM,
    3. Catalano PJ, et al
    . Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: a population-based study. Neuro Oncol 2017;19:1511–21 doi:10.1093/neuonc/nox077 pmid:28444227
    CrossRefPubMed
  5. 5.↵
    1. Thomas RP,
    2. Xu LW,
    3. Lober RM, et al
    . The incidence and significance of multiple lesions in glioblastoma. J Neurooncol 2013;112:91–97 doi:10.1007/s11060-012-1030-1 pmid:23354652
    CrossRefPubMed
  6. 6.↵
    1. Li Y,
    2. Liu Y,
    3. Liang Y, et al
    . Radiomics can differentiate high-grade glioma from brain metastasis: a systematic review and meta-analysis. Eur Radiol 2022;32:8039–51 doi:10.1007/s00330-022-08828-x pmid:35587827
    CrossRefPubMed
  7. 7.↵
    1. Danieli L,
    2. Riccitelli GC,
    3. Distefano D, et al
    . Brain tumor-enhancement visualization and morphometric assessment: a comparison of MPRAGE, SPACE, and VIBE MRI techniques. AJNR Am J Neuroradiol 2019;40:1140–48 doi:10.3174/ajnr.A6096 pmid:31221635
    Abstract/FREE Full Text
  8. 8.↵
    1. Fu Q,
    2. Cheng QG,
    3. Kong XC, et al
    . Comparison of contrast-enhanced T1-weighted imaging using DANTE-SPACE, PETRA, and MPRAGE: a clinical evaluation of brain tumors at 3 Tesla. Quant Imaging Med Surg 2022;12:592–607 doi:10.21037/qims-21-107 pmid:34993104
    CrossRefPubMed
  9. 9.↵
    1. Smith SM,
    2. Brady JM
    . SUSAN: a new approach to low level image processing. Int J Comput Vis 1997;23:45–78 doi:10.1023/A:1007963824710
    CrossRefPubMed
  10. 10.↵
    1. Avants BB,
    2. Tustison N,
    3. Song G
    . Advanced normalization tools (ANTS). Insight J 2009;2:1–35 doi:10.54294/uvnhin
    CrossRef
  11. 11.↵
    1. Gorgolewski K,
    2. Burns CD,
    3. Madison C, et al
    . Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Front Neuroinform 2011;5:13 doi:10.3389/fninf.2011.00013 pmid:21897815
    CrossRefPubMed
  12. 12.↵
    1. Jenkinson M,
    2. Beckmann CF,
    3. Behrens TE, et al
    . FSL. Neuroimage 2012;62:782–90 doi:10.1016/j.neuroimage.2011.09.015 pmid:21979382
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Smith SM,
    2. Jenkinson M,
    3. Woolrich MW, et al
    . Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004;23(Suppl 1):S208–19 doi:10.1016/j.neuroimage.2004.07.051 pmid:15501092
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Woolrich MW,
    2. Jbabdi S,
    3. Patenaude B, et al
    . Bayesian analysis of neuroimaging data in FSL. Neuroimage 2009;45:S173–86 doi:10.1016/j.neuroimage.2008.10.055 pmid:19059349
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Yin Y,
    2. Zhang X,
    3. Williams R, et al
    . LOGISMOS–layered optimal graph image segmentation of multiple objects and surfaces: cartilage segmentation in the knee joint. IEEE Trans Med Imaging 2010;29:2023–37 doi:10.1109/TMI.2010.2058861 pmid:20643602
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Priya S,
    2. Liu Y,
    3. Ward C, et al
    . Radiomic based machine learning performance for a three class problem in neuro-oncology: time to test the waters? Cancers (Basel) 2021;13:2568 doi:10.3390/cancers13112568 pmid:34073840
    CrossRefPubMed
  17. 17.↵
    1. van Griethuysen JJ,
    2. Fedorov A,
    3. Parmar C, et al
    . Computational radiomics system to decode the radiographic phenotype. Cancer Res 2017;77:e104–07 doi:10.1158/0008-5472.CAN-17-0339 pmid:29092951
    Abstract/FREE Full Text
  18. 18.↵
    1. Johnson WE,
    2. Li C,
    3. Rabinovic A
    . Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007;8:118–27 doi:10.1093/biostatistics/kxj037 pmid:16632515
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Orlhac F,
    2. Frouin F,
    3. Nioche C, et al
    . Validation of a method to compensate multicenter effects affecting CT radiomics. Radiology 2019;291:53–59 doi:10.1148/radiol.2019182023 pmid:30694160
    CrossRefPubMed
  20. 20.↵
    1. Fortin J
    . Harmonization of Multi-Site Imaging Data with ComBat. R Package Version 1.0.9.
  21. 21.↵
    1. Fortin JP,
    2. Parker D,
    3. Tunc B, et al
    . Harmonization of multi-site diffusion tensor imaging data. Neuroimage 2017;161:149–70 doi:10.1016/j.neuroimage.2017.08.047 pmid:28826946
    CrossRefPubMed
  22. 22.↵
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  23. 23.↵
    1. Mongan J,
    2. Moy L,
    3. Kahn C
    . Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell 2020;2:e200029 doi:10.1148/ryai.2020200029 pmid:33937821
    CrossRefPubMed
  24. 24.↵
    1. Ammari S,
    2. Pitre-Champagnat S,
    3. Dercle L, et al
    . Influence of magnetic field strength on magnetic resonance imaging radiomics features in brain imaging, an in vitro and in vivo study. Front Oncol 2020;10:541663 doi:10.3389/fonc.2020.541663 pmid:33552944
    CrossRefPubMed
  25. 25.↵
    1. Carre A,
    2. Klausner G,
    3. Edjlali M, et al
    . Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics. Sci Rep 2020;10:12340 doi:10.1038/s41598-020-69298-z pmid:32704007
    CrossRefPubMed
  26. 26.↵
    1. Ford J,
    2. Dogan N,
    3. Young L, et al
    . Quantitative radiomics: impact of pulse sequence parameter selection on MRI-based textural features of the brain. Contrast Media Mol Imaging 2018;2018:1729071 doi:10.1155/2018/1729071 pmid:30154684
    CrossRefPubMed
  27. 27.↵
    1. Mayerhoefer ME,
    2. Szomolanyi P,
    3. Jirak D, et al
    . Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: an application-oriented study. Med Phys 2009;36:1236–43 doi:10.1118/1.3081408
    CrossRefPubMed
  28. 28.↵
    1. Traverso A,
    2. Wee L,
    3. Dekker A, et al
    . Repeatability and reproducibility of radiomic features: a systematic review. Int J Radiat Oncol Biol Phys 2018;102:1143–58 doi:10.1016/j.ijrobp.2018.05.053 pmid:30170872
    CrossRefPubMed
  29. 29.↵
    1. Soni N,
    2. Priya S,
    3. Bathla G
    . Texture analysis in cerebral gliomas: a review of the literature. AJNR Am J Neuroradiol 2019;40:928–34 doi:10.3174/ajnr.A6075 pmid:31122918
    Abstract/FREE Full Text
  30. 30.↵
    1. van der Reijd DJ,
    2. Chupetlovska K,
    3. van Dijk E, et al
    . Multi-sequence MRI radiomics of colorectal liver metastases: which features are reproducible across readers? Eur J Radiol 2024;172:111346 doi:10.1016/j.ejrad.2024.111346 pmid:38309217
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 46 (2)
American Journal of Neuroradiology
Vol. 46, Issue 2
1 Feb 2025
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Radiomics-Based Differentiation of Glioblastoma and Metastatic Disease: Impact of Different T1-Contrast-Enhanced Sequences on Radiomics Features and Model Performance
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Girish Bathla, Camila G. Zamboni, Nicholas Larson, Yanan Liu, Honghai Zhang, Nam H. Lee, Amit Agarwal, Neetu Soni, Milan Sonka
Radiomics-Based Differentiation of Glioblastoma and Metastatic Disease: Impact of Different T1-Contrast-Enhanced Sequences on Radiomics Features and Model Performance
American Journal of Neuroradiology Feb 2025, 46 (2) 321-329; DOI: 10.3174/ajnr.A8470

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Radiomics: Differentiating Glioblastoma and Metastases
Girish Bathla, Camila G. Zamboni, Nicholas Larson, Yanan Liu, Honghai Zhang, Nam H. Lee, Amit Agarwal, Neetu Soni, Milan Sonka
American Journal of Neuroradiology Feb 2025, 46 (2) 321-329; DOI: 10.3174/ajnr.A8470
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (2)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Quantitative Physiologic MRI Combined with Feature Engineering for Developing Machine Learning-Based Prediction Models to Distinguish Glioblastomas from Single Brain Metastases
    Seyyed Ali Hosseini, Stijn Servaes, Brandon Hall, Sourav Bhaduri, Archith Rajan, Pedro Rosa-Neto, Steven Brem, Laurie A. Loevner, Suyash Mohan, Sanjeev Chawla
    Diagnostics 2024 15 1
  • Unterscheidung von Glioblastomen und Hirnmetastasen mit einem Radiomics-Modell
    Neuroradiologie Scan 2025 15 02

More in this TOC Section

  • AI-Enhanced Photon-Counting CT of Temporal Bone
  • DIRDL for Inflammatory Myelopathies
  • An AI De-identification Method for Pediatric MRIs
Show more Artificial Intelligence

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire