Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates


Improved Turnaround Times | Median time to first decision: 12 days

Research ArticleArtificial Intelligence

DSA Quantitative Analysis and Predictive Modeling of Obliteration in Cerebral AVM following Stereotactic Radiosurgery

Mohamed Sobhi Jabal, Marwa A. Mohammed, Cody L. Nesvick, Hassan Kobeissi, Christopher S. Graffeo, Bruce E. Pollock and Waleed Brinjikji
American Journal of Neuroradiology October 2024, 45 (10) 1521-1527; DOI: https://doi.org/10.3174/ajnr.A8351
Mohamed Sobhi Jabal
aFrom the Department of Radiology (M.S.J., M.A.M., H.K., W.B.), Mayo Clinic, Rochester, Minnesota
bDepartment of Computer and Information Science (M.S.J.), University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Mohamed Sobhi Jabal
Marwa A. Mohammed
aFrom the Department of Radiology (M.S.J., M.A.M., H.K., W.B.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Marwa A. Mohammed
Cody L. Nesvick
cDepartment of Neurological Surgery (C.L.N., C.S.G., B.E.P., W.B.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Cody L. Nesvick
Hassan Kobeissi
aFrom the Department of Radiology (M.S.J., M.A.M., H.K., W.B.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hassan Kobeissi
Christopher S. Graffeo
cDepartment of Neurological Surgery (C.L.N., C.S.G., B.E.P., W.B.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christopher S. Graffeo
Bruce E. Pollock
cDepartment of Neurological Surgery (C.L.N., C.S.G., B.E.P., W.B.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Bruce E. Pollock
Waleed Brinjikji
aFrom the Department of Radiology (M.S.J., M.A.M., H.K., W.B.), Mayo Clinic, Rochester, Minnesota
cDepartment of Neurological Surgery (C.L.N., C.S.G., B.E.P., W.B.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Waleed Brinjikji
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Patibandla MR,
    2. Ding D,
    3. Kano H, et al
    . Effect of treatment period on outcomes after stereotactic radiosurgery for brain arteriovenous malformations: an international multicenter study. J Neurosurg 2018;130:579–88 doi:10.3171/2017.8.JNS171336 pmid:29393755
    CrossRefPubMed
  2. 2.↵
    1. Pollock BE,
    2. Link MJ,
    3. Stafford SL, et al
    . Stereotactic radiosurgery for arteriovenous malformations: the effect of treatment period on patient outcomes. Neurosurgery 2016;78:499–509 doi:10.1227/NEU.0000000000001085 pmid:26990410
    CrossRefPubMed
  3. 3.↵
    1. Ding D,
    2. Starke RM,
    3. Kano H, et al
    . Radiosurgery for unruptured brain arteriovenous malformations: an international multicenter retrospective cohort study. Neurosurgery 2017;80:888–98 doi:10.1093/neuros/nyx181 pmid:28431024
    CrossRefPubMed
  4. 4.↵
    1. Flickinger JC,
    2. Pollock BE,
    3. Kondziolka D, et al
    . A dose response analysis of arteriovenous malformation obliteration after radiosurgery. Int J Radiat Oncol Biol Phys 1996;36:873–79 doi:10.1016/s0360-3016(96)00316-1 pmid:8960516
    CrossRefPubMed
  5. 5.↵
    1. Karlsson B,
    2. Lindquist C,
    3. Steiner L
    . Prediction of obliteration after gamma knife surgery for cerebral arteriovenous malformations. Neurosurgery 1997;40:425–30; discussion 430–21 doi:10.1097/00006123-199703000-00001 pmid:9055280
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Hopewell JW,
    2. Millar WT,
    3. Lindquist C, et al
    . Application of the concept of biologically effective dose (BED) to patients with vestibular Schwannomas treated by radiosurgery. J Radiosurg SBRT 2013;2:257–71 pmid:29296371
    PubMed
  7. 7.↵
    1. Jones B,
    2. Hopewell JW
    . Modelling the influence of treatment time on the biological effectiveness of single radiosurgery treatments: derivation of “protective” dose modification factors. Br J Radiol 2019;92:20180111 doi:10.1259/bjr.20180111 pmid:29745754
    CrossRefPubMed
  8. 8.↵
    1. Millar WT,
    2. Hopewell JW,
    3. Paddick I, et al
    . The role of the concept of biologically effective dose (BED) in treatment planning in radiosurgery. Phys Med 2015;31:627–33 doi:10.1016/j.ejmp.2015.04.008 pmid:25982304
    CrossRefPubMed
  9. 9.↵
    1. Nesvick CL,
    2. Graffeo CS,
    3. Brown PD, et al
    . The role of biological effective dose in predicting obliteration after stereotactic radiosurgery of cerebral arteriovenous malformations. Mayo Clin Proc 2021;96:1157–64 doi:10.1016/j.mayocp.2020.09.041 pmid:33958052
    CrossRefPubMed
  10. 10.↵
    1. Oppenheim C,
    2. Meder JF,
    3. Trystram D, et al
    . Radiosurgery of cerebral arteriovenous malformations: is an early angiogram needed? AJNR Am J Neuroradiol 1999;20:475–81 pmid:10219415
    Abstract/FREE Full Text
  11. 11.↵
    1. Steiner L,
    2. Lindquist C,
    3. Adler JR, et al
    . Clinical outcome of radiosurgery for cerebral arteriovenous malformations. J Neurosurg 1992;77:1–8 doi:10.3171/jns.1992.77.1.0001 pmid:1607950
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Derdeyn CP,
    2. Zipfel GJ,
    3. Albuquerque FC, et al
    ; American Heart Association Stroke Council. Management of brain arteriovenous malformations: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2017;48:e200–24 doi:10.1161/STR.0000000000000134 pmid:28642352
    Abstract/FREE Full Text
  13. 13.↵
    1. Aerts HJ
    . The Potential of Radiomic-Based Phenotyping in Precision Medicine: A Review. JAMA Oncol 2016;2:1636–42 doi:10.1001/jamaoncol.2016.2631 pmid:27541161
    CrossRefPubMed
  14. 14.↵
    1. Hassani C,
    2. Varghese BA,
    3. Nieva J, et al
    . Radiomics in pulmonary lesion imaging. AJR Am J Roentgenol 2019;212:497–504 doi:10.2214/AJR.18.20623 pmid:30620678
    CrossRefPubMed
  15. 15.↵
    1. Han Y,
    2. Yang Y,
    3. Shi ZS, et al
    . Distinguishing brain inflammation from grade II glioma in population without contrast enhancement: a radiomics analysis based on conventional MRI. Eur J Radiol 2021;134:109467 doi:10.1016/j.ejrad.2020.109467 pmid:33307462
    CrossRefPubMed
  16. 16.↵
    1. Su Y,
    2. Xu X,
    3. Zuo P, et al
    . Value of MR-based radiomics in differentiating uveal melanoma from other intraocular masses in adults. Eur J Radiol 2020;131:109268 doi:10.1016/j.ejrad.2020.109268 pmid:32947090
    CrossRefPubMed
  17. 17.↵
    1. Lambin P,
    2. Leijenaar RT,
    3. Deist TM, et al
    . Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 2017;14:749–62 doi:10.1038/nrclinonc.2017.141 pmid:28975929
    CrossRefPubMed
  18. 18.↵
    1. Christie JR,
    2. Lang P,
    3. Zelko LM, et al
    . Artificial intelligence in lung cancer: bridging the gap between computational power and clinical decision-making. Can Assoc Radiol J 2021;72:86–97 doi:10.1177/0846537120941434 pmid:32735493
    CrossRefPubMed
  19. 19.↵
    1. Bi WL,
    2. Hosny A,
    3. Schabath MB, et al
    . Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin 2019;69:127–57 doi:10.3322/caac.21552 pmid:30720861
    CrossRefPubMed
  20. 20.↵
    1. Sala E,
    2. Mema E,
    3. Himoto Y, et al
    . Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol 2017;72:3–10 doi:10.1016/j.crad.2016.09.013 pmid:27742105
    CrossRefPubMed
  21. 21.↵
    1. Neisius U,
    2. El-Rewaidy H,
    3. Nakamori S, et al
    . Radiomic analysis of myocardial native T1 imaging discriminates between hypertensive heart disease and hypertrophic cardiomyopathy. JACC Cardiovasc Imaging 2019;12:1946–54 doi:10.1016/j.jcmg.2018.11.024 pmid:30660549
    Abstract/FREE Full Text
  22. 22.↵
    1. Mannil M,
    2. von Spiczak J,
    3. Manka R, et al
    . Texture analysis and machine learning for detecting myocardial infarction in noncontrast low dose computed tomography: unveiling the invisible. Invest Radiol 2018;53:338–43 doi:10.1097/RLI.0000000000000448 pmid:29420321
    CrossRefPubMed
  23. 23.↵
    1. Castellano G,
    2. Bonilha L,
    3. Li LM, et al
    . Texture analysis of medical images. Clin Radiol 2004;59:1061–69 doi:10.1016/j.crad.2004.07.008 pmid:15556588
    CrossRefPubMed
  24. 24.↵
    1. Tourassi GD
    . Journey toward computer-aided diagnosis: role of image texture analysis. Radiology 1999;213:317–20 doi:10.1148/radiology.213.2.r99nv49317 pmid:10551208
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Ding D,
    2. Liu KC
    . Predictive capability of the Spetzler-Martin versus supplementary grading scale for microsurgical outcomes of cerebellar arteriovenous malformations. J Cerebrovasc Endovasc Neurosurg 2013;15:307–10 doi:10.7461/jcen.2013.15.4.307 pmid:24729957
    CrossRefPubMed
  26. 26.↵
    1. Pollock BE,
    2. Flickinger JC,
    3. Lunsford LD, et al
    . Factors that predict the bleeding risk of cerebral arteriovenous malformations. Stroke 1996;27:1–6 doi:10.1161/01.str.27.1.1 pmid:8553382
    Abstract/FREE Full Text
  27. 27.↵
    1. Stapf C,
    2. Mast H,
    3. Sciacca RR, et al
    . Predictors of hemorrhage in patients with untreated brain arteriovenous malformation. Neurology 2006;66:1350–55 doi:10.1212/01.wnl.0000210524.68507.87 pmid:16682666
    Abstract/FREE Full Text
  28. 28.↵
    1. Pollock BE,
    2. Flickinger JC
    . Modification of the radiosurgery-based arteriovenous malformation grading system. Neurosurgery 2008;63:239–43; discussion 243 doi:10.1227/01.NEU.0000315861.24920.92 pmid:18797353
    CrossRefPubMed
  29. 29.↵
    1. De Oliveira E,
    2. Tedeschi H,
    3. Raso J
    . Comprehensive management of arteriovenous malformations. Neurol Res 1998;20:673–83 doi:10.1080/01616412.1998.11740583 pmid:9864730
    CrossRefPubMed
  30. 30.↵
    1. Wegner RE,
    2. Oysul K,
    3. Pollock BE, et al
    . A modified radiosurgery-based arteriovenous malformation grading scale and its correlation with outcomes. Int J Rad Oncol Biol Phys 2011;79:1147–50 doi:10.1016/j.ijrobp.2009.12.056 pmid:20605347
    CrossRefPubMed
  31. 31.↵
    1. Lawton MT,
    2. Kim H,
    3. McCulloch CE, et al
    . A supplementary grading scale for selecting patients with brain arteriovenous malformations for surgery. Neurosurgery 2010;66:702–13; discussion 713 doi:10.1227/01.NEU.0000367555.16733.E1 pmid:20190666
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Kim H,
    2. Abla AA,
    3. Nelson J, et al
    . Validation of the supplemented Spetzler-Martin grading system for brain arteriovenous malformations in a multicenter cohort of 1009 surgical patients. Neurosurgery 2015;76:25–33 doi:10.1227/NEU.0000000000000556 pmid:25251197
    CrossRefPubMed
  33. 33.↵
    1. Fedorov A,
    2. Beichel R,
    3. Kalpathy-Cramer J, et al
    . 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 2012;30:1323–41 doi:10.1016/j.mri.2012.05.001 pmid:22770690
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Pinter C,
    2. Lasso A,
    3. Fichtinger G
    . Polymorph segmentation representation for medical image computing. Comput Methods Programs Biomed 2019;171:19–26 doi:10.1016/j.cmpb.2019.02.011 pmid:30902247
    CrossRefPubMed
  35. 35.↵
    1. van Griethuysen JJM,
    2. Fedorov A,
    3. Parmar C, et al
    . Computational radiomics system to decode the radiographic phenotype. Cancer Res 2017;77:e104–07 doi:10.1158/0008-5472.CAN-17-0339 pmid:29092951
    Abstract/FREE Full Text
  36. 36.↵
    1. Ding C,
    2. Peng H
    . Minimum redundancy feature selection from microarray gene expression data. J Bioinforma Comput Biol 2005;03:185–205 doi:10.1142/s0219720005001004 pmid:15852500
    CrossRefPubMed
  37. 37.↵
    1. Peng H,
    2. Long F,
    3. Ding C
    . Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 2005;27:1226–38 doi:10.1109/TPAMI.2005.159 pmid:16119262
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Ma L,
    2. Fan S
    . CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests. BMC Bioinformatics 2017;18:169 doi:10.1186/s12859-017-1578-z pmid:28292263
    CrossRefPubMed
  39. 39.↵
    1. Chawla NV,
    2. Bowyer KW,
    3. Hall LO, et al
    . SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 2002;16:321–57 doi:10.1613/jair.953
    CrossRef
  40. 40.↵
    1. Lundberg SM,
    2. Allen PG,
    3. Lee SI
    . A unified approach to interpreting model predictions. advances in neural information processing systems. November 2017. arXiv:1705.07874 [cs.AI] http://arxiv.org/abs/1705.07874. Accessed May 1, 2023
  41. 41.↵
    1. Lundberg SM,
    2. Nair B,
    3. Vavilala MS, et al
    . Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng 2018;2:749–60 doi:10.1038/s41551-018-0304-0 pmid:31001455
    CrossRefPubMed
  42. 42.↵
    1. Lundberg SM,
    2. Erion G,
    3. Chen H, et al
    . From local explanations to global understanding with explainable AI for trees. Nat Mach Intell 2020;2:56–67 doi:10.1038/s42256-019-0138-9 pmid:32607472
    CrossRefPubMed
  43. 43.↵
    1. Yang HC,
    2. Peng SJ,
    3. Lee CC, et al
    . Does the diffuseness of the nidus affect the outcome of stereotactic radiosurgery in patients with unruptured cerebral arteriovenous malformations? Stereotact Funct Neurosurg 2021;99:113–22 doi:10.1159/000510683 pmid:33264796
    CrossRefPubMed
  44. 44.↵
    1. Gao D,
    2. Meng X,
    3. Jin H, et al
    . Assessment of gamma knife radiosurgery for unruptured cerebral arteriovenous malformations based on multi-parameter radiomics of MRI. Magn Reson Imaging 2022;92:251–59 doi:10.1016/j.mri.2022.07.008 pmid:35870722
    CrossRefPubMed
  45. 45.↵
    1. Oermann E,
    2. Rubinsteyn A,
    3. Ding D, et al
    . Using a machine learning approach to predict outcomes after radiosurgery for cerebral arteriovenous malformations. Sci Rep 2016;6:21161 doi:10.1038/srep21161 pmid:26856372
    CrossRefPubMed
  46. 46.↵
    1. Meng X,
    2. Gao D,
    3. He H, et al
    . A machine learning model predicts the outcome of SRS for residual arteriovenous malformations after partial embolization: a real-world clinical obstacle. World Neurosurg 2022;163:e73–82 doi:10.1016/j.wneu.2022.03.007 pmid:35276397
    CrossRefPubMed
  47. 47.↵
    1. Jiao Y,
    2. Zhang JZ,
    3. Zhao Q, et al
    . Machine learning-enabled determination of diffuseness of brain arteriovenous malformations from magnetic resonance angiography. Transl Stroke Res 2021;13:939–48 doi:10.1007/s12975-021-00933-1 pmid:34383209
    CrossRefPubMed
  48. 48.↵
    1. Shi K,
    2. Xiao W,
    3. Wu G, et al
    . Temporal-spatial feature extraction of DSA video and its application in AVM diagnosis. Front Neurol 2021;12:655523 doi:10.3389/fneur.2021.655523 pmid:34122304
    CrossRefPubMed
  49. 49.↵
    1. Kleinbaum DG,
    2. Kupper LL,
    3. Muller KE
    , eds. Applied Regression Analysis and Other Multivariable Methods. Boston: PWS Kent Publishing Co; 1988
  50. 50.↵
    1. Sollini M,
    2. Cozzi L,
    3. Antunovic L, et al
    . PET radiomics in NSCLC: state of the art and a proposal for harmonization of methodology. Sci Rep 2017;7:358 doi:10.1038/s41598-017-00426-y pmid:28336974
    CrossRefPubMed
  51. 51.↵
    1. Gillies RJ,
    2. Kinahan PE,
    3. Hricak H
    . Radiomics: images are more than pictures, they are data. Radiology 2016;278:563–77 doi:10.1148/radiol.2015151169 pmid:26579733
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 45 (10)
American Journal of Neuroradiology
Vol. 45, Issue 10
1 Oct 2024
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
DSA Quantitative Analysis and Predictive Modeling of Obliteration in Cerebral AVM following Stereotactic Radiosurgery
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Mohamed Sobhi Jabal, Marwa A. Mohammed, Cody L. Nesvick, Hassan Kobeissi, Christopher S. Graffeo, Bruce E. Pollock, Waleed Brinjikji
DSA Quantitative Analysis and Predictive Modeling of Obliteration in Cerebral AVM following Stereotactic Radiosurgery
American Journal of Neuroradiology Oct 2024, 45 (10) 1521-1527; DOI: 10.3174/ajnr.A8351

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
DSA Analysis of AVM Obliteration Post-RS
Mohamed Sobhi Jabal, Marwa A. Mohammed, Cody L. Nesvick, Hassan Kobeissi, Christopher S. Graffeo, Bruce E. Pollock, Waleed Brinjikji
American Journal of Neuroradiology Oct 2024, 45 (10) 1521-1527; DOI: 10.3174/ajnr.A8351
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Large Language Models in Radiology
  • Improving Hematoma Expansion Prediction Robustness
  • MRI-Based Models for Diagnosis of Brain Lesions
Show more Artificial Intelligence

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire