Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain
Open Access

Evaluation of the Statistical Detection of Change Algorithm for Screening Patients with MS with New Lesion Activity on Longitudinal Brain MRI

M. Homssi, E.M. Sweeney, E. Demmon, W. Mannheim, M. Sakirsky, Y. Wang, S.A. Gauthier, A. Gupta and T.D. Nguyen
American Journal of Neuroradiology June 2023, 44 (6) 649-655; DOI: https://doi.org/10.3174/ajnr.A7858
M. Homssi
aFrom the Department of Radiology (M.H., Y.W., A.G., T.D.N.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Homssi
E.M. Sweeney
dPenn Statistics in Imaging and Visualization Endeavor (PennSIVE) Center, Department of Biostatistics, Epidemiology, and Informatics (E.M.S.), University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E.M. Sweeney
E. Demmon
bDepartment of Neurology (E.D., W.M., M.S., S.A.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E. Demmon
W. Mannheim
bDepartment of Neurology (E.D., W.M., M.S., S.A.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for W. Mannheim
M. Sakirsky
bDepartment of Neurology (E.D., W.M., M.S., S.A.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Sakirsky
Y. Wang
aFrom the Department of Radiology (M.H., Y.W., A.G., T.D.N.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Wang
S.A. Gauthier
bDepartment of Neurology (E.D., W.M., M.S., S.A.G.)
cThe Feil Family Brain & Mind Institute (S.A.G.), Weill Cornell Medicine, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.A. Gauthier
A. Gupta
aFrom the Department of Radiology (M.H., Y.W., A.G., T.D.N.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Gupta
T.D. Nguyen
aFrom the Department of Radiology (M.H., Y.W., A.G., T.D.N.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T.D. Nguyen
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Filippi M,
    2. Rocca MA,
    3. Ciccarelli O
    , et al; MAGNIMS Study Group. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol 2016;15:292–303 doi:10.1016/S1474-4422(15)00393-2 pmid:26822746
    CrossRefPubMed
  2. 2.↵
    1. Moraal B,
    2. Wattjes MP,
    3. Geurts JJ, et al
    . Improved detection of active multiple sclerosis lesions: 3D subtraction imaging. Radiology 2010;255:154–63 doi:10.1148/radiol.09090814 pmid:20308453
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Wattjes MP,
    2. Ciccarelli O,
    3. Reich DS
    , et al; North American Imaging in Multiple Sclerosis Cooperative MRI Guidelines Working Group. 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol 2021;20:653–70 doi:10.1016/S1474-4422(21)00095-8 pmid:34139157
    CrossRefPubMed
  4. 4.↵
    1. Carass A,
    2. Roy S,
    3. Jog A, et al
    . Longitudinal multiple sclerosis lesion segmentation: resource and challenge. Neuroimage 2017;148:77–102 doi:10.1016/j.neuroimage.2016.12.064 pmid:28087490
    CrossRefPubMed
  5. 5.↵
    1. Patriarche J,
    2. Erickson B
    . A review of the automated detection of change in serial imaging studies of the brain. J Digit Imaging 2004;17:158–74 doi:10.1007/s10278-004-1010-x pmid:15534751
    CrossRefPubMed
  6. 6.↵
    1. Llado X,
    2. Ganiler O,
    3. Oliver A, et al
    . Automated detection of multiple sclerosis lesions in serial brain MRI. Neuroradiology 2012;54:787–807 doi:10.1007/s00234-011-0992-6 pmid:22179659
    CrossRefPubMed
  7. 7.↵
    1. Diaz-Hurtado M,
    2. Martinez-Heras E,
    3. Solana E, et al
    . Recent advances in the longitudinal segmentation of multiple sclerosis lesions on magnetic resonance imaging: a review. Neuroradiology 2022;64:2103–17 doi:10.1007/s00234-022-03019-3 pmid:35864180
    CrossRefPubMed
  8. 8.↵
    1. Sweeney EM,
    2. Shinohara RT,
    3. Shea CD, et al
    . Automatic lesion incidence estimation and detection in multiple sclerosis using multisequence longitudinal MRI. AJNR Am J Neuroradiol 2013;34:68–73 doi:10.3174/ajnr.A3172 pmid:22766673
    Abstract/FREE Full Text
  9. 9.↵
    1. Battaglini M,
    2. Rossi F,
    3. Grove RA, et al
    . Automated identification of brain new lesions in multiple sclerosis using subtraction images. J Magn Reson Imaging 2014;39:1543–49 doi:10.1002/jmri.24293 pmid:24987754
    CrossRefPubMed
  10. 10.↵
    1. Ganiler O,
    2. Oliver A,
    3. Diez Y, et al
    . A subtraction pipeline for automatic detection of new appearing multiple sclerosis lesions in longitudinal studies. Neuroradiology 2014;56:363–74 doi:10.1007/s00234-014-1343-1 pmid:24590302
    CrossRefPubMed
  11. 11.↵
    1. Jain S,
    2. Ribbens A,
    3. Sima DM, et al
    . Two time point MS lesion segmentation in brain MRI: an expectation-maximization framework. Front Neurosci 2016;10:576 doi:10.3389/fnins.2016.00576 pmid:28066162
    CrossRefPubMed
  12. 12.↵
    1. Cabezas M,
    2. Corral JF,
    3. Oliver A, et al
    . Improved automatic detection of new T2 lesions in multiple sclerosis using deformation fields. AJNR Am J Neuroradiol 2016;37:1816–23 doi:10.3174/ajnr.A4829 pmid:27282863
    Abstract/FREE Full Text
  13. 13.↵
    1. Eichinger P,
    2. Wiestler H,
    3. Zhang H, et al
    . A novel imaging technique for better detecting new lesions in multiple sclerosis. J Neurol 2017;264:1909–18 doi:10.1007/s00415-017-8576-y pmid:28756606
    CrossRefPubMed
  14. 14.↵
    1. Nguyen TD,
    2. Zhang S,
    3. Gupta A, et al
    . Fast and robust unsupervised identification of MS lesion change using the statistical detection of changes algorithm. AJNR Am J Neuroradiol 2018;39:830–33 doi:10.3174/ajnr.A5594 pmid:29519791
    Abstract/FREE Full Text
  15. 15.↵
    1. Galletto Pregliasco A,
    2. Collin A,
    3. Gueguen A, et al
    . Improved detection of new MS lesions during follow-up using an automated MR coregistration-fusion method. AJNR Am J Neuroradiol 2018;39:1226–32 doi:10.3174/ajnr.A5690 pmid:29880479
    Abstract/FREE Full Text
  16. 16.↵
    1. Birenbaum A,
    2. Greenspan H
    . Multi-view longitudinal CNN for multiple sclerosis lesion segmentation. Eng Appl Artif Intel 2017;65:111–18 doi:10.1016/j.engappai.2017.06.006
    CrossRef
  17. 17.↵
    1. Fartaria MJ,
    2. Kober T,
    3. Granziera C, et al
    . Longitudinal analysis of white matter and cortical lesions in multiple sclerosis. Neuroimage Clin 2019;23:101938 doi:10.1016/j.nicl.2019.101938 pmid:31491829
    CrossRefPubMed
  18. 18.↵
    1. Salem M,
    2. Valverde S,
    3. Cabezas M, et al
    . A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis. Neuroimage Clin 2020;25:102149 doi:10.1016/j.nicl.2019.102149 pmid:31918065
    CrossRefPubMed
  19. 19.↵
    1. Schmidt-Mengin M,
    2. Soulier T,
    3. Hamzaoui M, et al
    . Online hard example mining vs. fixed oversampling strategy for segmentation of new multiple sclerosis lesions from longitudinal FLAIR MRI. Front Neurosci 2022;16:1004050 doi:10.3389/fnins.2022.1004050 pmid:36408404
    CrossRefPubMed
  20. 20.↵
    1. Basaran BD,
    2. Matthews PM,
    3. Bai W
    . New lesion segmentation for multiple sclerosis brain images with imaging and lesion-aware augmentation. Front Neurosci 2022;16:1007453 doi:10.3389/fnins.2022.1007453 pmid:36340756
    CrossRefPubMed
  21. 21.↵
    1. Smith SM
    . Fast robust automated brain extraction. Hum Brain Mapp 2002;17:143–55 doi:10.1002/hbm.10062 pmid:12391568
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Zhang Y,
    2. Brady M,
    3. Smith S
    . Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001;20:45–57 doi:10.1109/42.906424 pmid:11293691
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Jenkinson M,
    2. Bannister P,
    3. Brady M, et al
    . Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002;17:825–41 doi:10.1006/nimg.2002.1132 pmid:12377157
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Avants BB,
    2. Tustison NJ,
    3. Song G, et al
    . A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 2011;54:2033–44 doi:10.1016/j.neuroimage.2010.09.025 pmid:20851191
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Yushkevich PA,
    2. Piven J,
    3. Hazlett HC, et al
    . User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006;31:1116–28 doi:10.1016/j.neuroimage.2006.01.015 pmid:16545965
    CrossRefPubMedWeb of Science
  26. 26.↵
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria; 2021. https://www.R-project.org. Accessed April 20, 2023
  27. 27.↵
    1. Collett D
    . Modelling Binary Data. 2nd ed. Taylor & Francis; 2002
  28. 28.↵
    1. Efron B,
    2. Tibshirani RJ
    . An Introduction to the Bootstrap. CRC Press; 1994
  29. 29.↵
    1. Breslow N,
    2. Day NE
    . Statistical Methods in Cancer Research: The Analysis of Case-Control Studies. IARC Scientific Publication; 1980
  30. 30.↵
    1. Kay SM
    . Fundamentals of Statistical Signal Processing: Detection Theory. Vol. II. Prentice Hall; 1998
  31. 31.↵
    1. Shamonin DP,
    2. Bron EE,
    3. Lelieveldt BP, et al
    ; Alzheimer’s Disease Neuroimaging Initiative. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer’s disease. Front Neuroinform 2013;7:50 doi:10.3389/fninf.2013.00050 pmid:24474917
    CrossRefPubMed
  32. 32.↵
    1. Balakrishnan G,
    2. Zhao A,
    3. Sabuncu MR, et al
    . An unsupervised learning model for deformable medical image registration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Utah. June 18–23, 2018;9252–60
  33. 33.↵
    1. Yang X,
    2. Kwitt R,
    3. Styner M, et al
    . Quicksilver: fast predictive image registration—a deep learning approach. Neuroimage 2017;158:378–96 doi:10.1016/j.neuroimage.2017.07.008 pmid:28705497
    CrossRefPubMed
  34. 34.↵
    1. Obuchowski NA,
    2. Bullen J
    . Multireader diagnostic accuracy imaging studies: fundamentals of design and analysis. Radiology 2022;303:26–34 doi:10.1148/radiol.211593 pmid:35166584
    CrossRefPubMed
  35. 35.↵
    1. Maranzano J,
    2. Dadar M,
    3. Rudko DA, et al
    . Comparison of multiple sclerosis cortical lesion types detected by multicontrast 3T and 7T MRI. AJNR Am J Neuroradiol 2019;40:1162–69 doi:10.3174/ajnr.A6099 pmid:31221631
    Abstract/FREE Full Text
  36. 36.↵
    1. Zhang S,
    2. Nguyen TD,
    3. Zhao Y, et al
    . Diagnostic accuracy of semiautomatic lesion detection plus quantitative susceptibility mapping in the identification of new and enhancing multiple sclerosis lesions. Neuroimage Clin 2018;18:143–48 doi:10.1016/j.nicl.2018.01.013 pmid:29387531
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 44 (6)
American Journal of Neuroradiology
Vol. 44, Issue 6
1 Jun 2023
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Evaluation of the Statistical Detection of Change Algorithm for Screening Patients with MS with New Lesion Activity on Longitudinal Brain MRI
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
M. Homssi, E.M. Sweeney, E. Demmon, W. Mannheim, M. Sakirsky, Y. Wang, S.A. Gauthier, A. Gupta, T.D. Nguyen
Evaluation of the Statistical Detection of Change Algorithm for Screening Patients with MS with New Lesion Activity on Longitudinal Brain MRI
American Journal of Neuroradiology Jun 2023, 44 (6) 649-655; DOI: 10.3174/ajnr.A7858

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Statistical Detection of MS Lesion Activity on MRI
M. Homssi, E.M. Sweeney, E. Demmon, W. Mannheim, M. Sakirsky, Y. Wang, S.A. Gauthier, A. Gupta, T.D. Nguyen
American Journal of Neuroradiology Jun 2023, 44 (6) 649-655; DOI: 10.3174/ajnr.A7858
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Revolutionizing MS Monitoring: The Impact of Postprocessing Techniques on Lesion Detection
  • Revolutionizing MS Monitoring: The Impact of Postprocessing Techniques on Lesion Detection
  • Crossref (4)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Optimization of Binocular Vision Ranging Based on Sparse Stereo Matching and Feature Point Extraction
    Zhiliang Chen, Wei Zhang, Shilin Li, Kaixiong Zhu, Huiyuan Chen
    IEEE Access 2024 12
  • MS: Algorithmus-basierte Detektion neuer Läsionen in der weißen Substanz
    Neuroradiologie Scan 2024 14 01
  • Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 Workshops
    Berke Doga Basaran, Xinru Zhang, Paul M. Matthews, Wenjia Bai
    2025 15401
  • Revolutionizing MS Monitoring: The Impact of Postprocessing Techniques on Lesion Detection
    A. Lecler
    American Journal of Neuroradiology 2023 44 6

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • NCCT vs. MRI for Brain Atrophy in Acute Stroke
  • Clinical Outcomes After Chiari I Decompression
Show more ADULT BRAIN

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire