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ORIGINAL RESEARCH
ADULT BRAIN

Evaluation of the Statistical Detection of Change Algorithm
for Screening Patients with MS with New Lesion Activity on

Longitudinal Brain MRI
M. Homssi, E.M. Sweeney, E. Demmon, W. Mannheim, M. Sakirsky, Y. Wang, S.A. Gauthier, A. Gupta, and

T.D. Nguyen

ABSTRACT

BACKGROUND AND PURPOSE: Identification of new MS lesions on longitudinal MR imaging by human readers is time-consuming
and prone to error. Our objective was to evaluate the improvement in the performance of subject-level detection by readers
when assisted by the automated statistical detection of change algorithm.

MATERIALS AND METHODS: A total of 200 patients with MS with a mean interscan interval of 13.2 (SD, 2.4)months were included.
Statistical detection of change was applied to the baseline and follow-up FLAIR images to detect potential new lesions for confir-
mation by readers (Reader 1 statistical detection of change method). This method was compared with readers operating in the
clinical workflow (Reader method) for a subject-level detection of new lesions.

RESULTS: Reader 1 statistical detection of change found 30 subjects (15.0%) with at least 1 new lesion, while Reader detected 16
subjects (8.0%). As a subject-level screening tool, statistical detection of change achieved a perfect sensitivity of 1.00 (95% CI,
0.88–1.00) and a moderate specificity of 0.67 (95% CI, 0.59–0.74). The agreement on a subject level was 0.91 (95% CI, 0.87–0.95)
between Reader 1 statistical detection of change and Reader, and 0.72 (95% CI, 0.66–0.78) between Reader 1 statistical detection
of change and statistical detection of change.

CONCLUSIONS: The statistical detection of change algorithm can serve as a time-saving screening tool to assist human readers in
verifying 3D FLAIR images of patients with MS with suspected new lesions. Our promising results warrant further evaluation of sta-
tistical detection of change in prospective multireader clinical studies.

ABBREVIATIONS: PPV ¼ positive predictive value; SDC ¼ statistical detection of change

Detection of new lesion activity on serial MR imaging is im-
portant for the disease diagnosis, monitoring, and evalua-

tion of treatment response in patients with MS.1 In most clinical
workflows, expert readers manually view baseline and follow-up
brain MR images side-by-side on a PACS monitor to look for
voxels with sufficiently large changes in image intensity and size

to be considered a potentially clinically relevant new MS lesion.2

The state-of-the-art 3D T2-weighted FLAIR images, acquired in
a routine clinical MS imaging protocol1 as recommended by the
most recent clinical consensus,3 provide high 1-mm isotropic
resolution and excellent soft-tissue contrast for lesion detection.
However, native images obtained at 2 different time points are
often imperfectly aligned due to differences in patient position-
ing and acquisition technique. Therefore, detecting new lesions
by visual matching on the unregistered longitudinal images
(when image registration tools are not readily available on the
reading workstation) in the presence of noise is a time-consum-
ing, error-prone, and highly observer-dependent task, even for
human experts.4

A number of automated and semiautomated algorithms
have been developed to overcome these challenges.5-7 In the
classic approach, serially acquired images are intensity-
normalized and coregistered, from which a dissimilarity map
(eg, obtained by subtraction) is calculated and then automati-
cally segmented (eg, by thresholding or statistical inference
methods) or reviewed by humans to yield the final lesion
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change mask.2,8-15 More recently, supervised deep learning–
based convolutional neural network models have become the
predominant approach.16-20 Despite rapid advances in research,
the detection sensitivity and specificity remain moderate on a
voxel or lesion level (sensitivity and specificity; ,0.8).4,7 We
previously introduced the statistical detection of change (SDC)
algorithm as an automated lesion-change detection tool to visu-
ally assist human readers. This algorithm applies an optimal bi-
nary change detector to the subtraction of 2 longitudinally
registered FLAIR images to delineate brain areas with potential
new lesions.14 The purpose of this study was to evaluate the
improvement in the performance of subject-level detection by
human readers when assisted by SDC, in comparison with the
benchmark of human readers operating in the clinical workflow.

MATERIALS AND METHODS
Study Cohort
This was a retrospective longitudinal study conducted in a cohort
of 200 patients with MS (145 women [72.5%], 55 men [27.5%];
mean age, 47.6 [SD, 10.9] years; range, 18.5–75.8 years) who were
enrolled in an ongoing prospective imaging and clinical database
for MS research. The database was approved by the local institu-
tional review board (Judith Jaffe Multiple Sclerosis Center clinical
and MR imaging database, IRB No. 0711009544; Weill Cornell
Medicine), and written informed consent was obtained from all
participants before their entry into the database. Consecutive
patients who underwent 2 MR imaging scans between September
20, 2017, and July 7, 2021, with a mean follow-up interval of 13.2
(SD, 2.4)months (range, 7.5–24.8months) were included. The
final cohort consisted of 6 patients with clinically isolated syn-
drome, 181 with relapsing-remitting MS, 6 with primary-progres-
sive MS, and 7 with secondary-progressive MS. The mean disease
duration was 14.7 (SD, 7.4) years (range, 2.6–54.9 years), and the
mean Expanded Disability Status Scale score was 1.3 (SD, 1.6)
(range, 0.0–7.0; median, 1.0; interquartile range, 2.0). A total of
183 patients (91.5%) were treated with disease-modifying thera-
pies. Of these, 88 (48.1%) received treatment by injection; 60
(32.8%), orally; and 35 (19.1%), by infusion.

MR Imaging Examinations
All patients were scanned on 3T MR imaging scanners
(Magnetom Skyra and Vida; Siemens) using a product 20-channel
head/neck coil. The scanning protocol included pre- and postgado-
linium 3D T1-weighted MPRAGE sequences for anatomic defini-
tion and detection of active lesions, respectively, and 3D T2-
weighted FLAIR and a sampling-perfection with application opti-
mized contrasts by using different flip angle evolution (SPACE;
Siemens) sequence for lesion identification, using the following
imaging parameters: 1) 3D sagittal T1-weighted MPRAGE: TR/
TE/TI ¼ 2300.0/2.3/900ms, flip angle ¼ 8°, bandwidth ¼ 200Hz/
pixel, acquired voxel size ¼ 1.0-mm isotropic, number of slices ¼
176, parallel imaging factor ¼ 2.0, scan time ¼ 5 minutes 21 sec-
onds; 2) 3D sagittal T2-weighted FLAIR SPACE: TR/TE/TI ¼
7600/448/2450ms, flip angle ¼ 90°, bandwidth ¼ 781 Hz/pixel,
echo spacing ¼ 3.42ms, turbo factor ¼ 284, acquired voxel size ¼
1.0-mm isotropic, number of slices¼ 176, parallel imaging factor¼
4.0, scan time¼ 5 minutes 6 seconds.

Image Postprocessing
At each time point, T1-weighted and FLAIR images were brain-
extracted using the FMRIB Software Library (FSL) BET com-
mand (FSL Brain Extraction Tool (http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/BET)21 and corrected for spatial inhomogeneity and seg-
mented into gray matter, white matter, and CSF masks using
the FSL FAST command (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
FAST).22 The FLAIR image was then linearly registered to the
T1-weighted structural image using the FSL FLIRT command
(Linear Image Registration Tool; FLIRT; http://www.fmrib.ox.ac.
uk/fsl/fslwiki/FLIRT)23 with 6 df (rigid body transformation). For
longitudinal registration, the baseline and follow-up brain-
extracted T1-weighted images were first linearly aligned to a half-
way space9 using the Advanced Normalization Tools algorithm
(http://stnava.github.io/ANTs/) with 12 df (rigid body and affine
transformation),24 followed by registration of the corresponding
FLAIR images into the same half-way space using the concaten-
ated transformation matrices obtained from the previous steps.
The purpose of spatially aligning longitudinal images to the half-
way space was to ensure that the degree of blurring introduced by
the registration algorithm was similar among images, which
improves image subtraction.

Next, the SDC algorithm,14 implemented in Matlab R2020
(MathWorks) on a Linux Ubuntu 18.04 computer equipped with
a 64-bit Intel Core i9-9940X 3.30GHz CPU and 128 GB of RAM,
was applied to the registered and intensity-normalized FLAIR
images in the half-way space to detect brain voxels with positive
signal change (indicating new lesions or growth of existing
lesions). Briefly, for each voxel, the SDC test statistic was calcu-
lated from the FLAIR subtraction image over a 3-voxel connected
neighborhood and compared with a threshold (chosen to achieve
a false-positive rate of 0.0001) to generate a binary positive
change mask. Additional constraints were imposed on the mini-
mum lesion volume (15 mm3) and location (lesions located
within 2 voxels of the CSF border and the GM/WM tissue border
had to be part of a larger lesion that extended outside this border)
to reduce the number of false-positives. The constraint on the
lesion location was useful for eliminating the thin layer of bright
voxels lining the ventricles on the FLAIR image and also for deal-
ing with spurious voxels at the tissue edge on the FLAIR differ-
ence image due to imperfect subtraction.

Finally, the detected changed voxels were registered back to
the follow-up FLAIR image. A binary mask was generated by the
SDC algorithm, which was overlaid on the baseline and follow-
up FLAIR image pair to delineate potential new lesions with a red
box (Fig 1) to facilitate subsequent visual confirmation of the
detected new lesions by human readers. The processing time of
the SDC algorithm was recorded in 5 randomly chosen subjects.

Visual Identification of New Lesions
The registered baseline and follow-up FLAIR images, along with
the red boxes marking the potential new lesions detected by SDC
(Fig 1), were displayed side-by-side in the axial plane using ITK-
SNAP Version 3.8 software (www.itksnap.org).25 Two expert
readers, a board-certified neuroradiologist with 16 years of expe-
rience and an MR imaging physicist with 20 years of experience,
both of whom were blinded to clinical and other imaging
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information, jointly reviewed the FLAIR images with visual assis-
tance from SDC-detected areas of lesion growth to identify new
lesions on the basis of consensus (Reader 1 SDC method). The
readers assessed all available FLAIR images both inside and out-
side the areas of change detected by SDC algorithm. A lesion was
considered as new if it could be seen on the follow-up FLAIR
image but could not be ascertained on the baseline FLAIR image.

For comparison, the official radiology reports created by
board-certified neuroradiologists at the time of the clinical encoun-
ters were retrieved from the EPIC electronic medical record system
(Epic Systems) and manually parsed for the mention of at least 1
new lesion. In our clinical workflow occurring in the context of a
routine outpatient imaging practice affiliated with a large academic
health system, new lesions are detected on the basis of the visual
interpretation of baseline and follow-up native brain images
acquired with FLAIR as well as T1-weighted, T2-weighted, and
gadolinium-enhanced T1-weighted sequences (hereafter referred
to as the Reader method). In this setting, faculty neuroradiologists,
all of whom are board-certified, reviewed these brain MR imaging
studies as they appeared in real time on a clinical worklist. Cases
were variably interpreted alongside radiology clinical trainees
(diagnostic radiology residents and/or neuroradiology fellows)
with the benefit of full access to the electronic health record and all
patient records. During the time period of this study (approxi-
mately 4 years), all image interpretation was performed on a PACS
system. The total number of new lesions and their precise ana-
tomic locations were variably recorded in the reports, subject to
the clinical scenario and preferences of the interpreting radiologist.
Therefore, in this study, lesion detection outcome for the 3 meth-
ods (Reader, SDC, and Reader 1 SDC) was defined at a subject
level as a binary indicator of having at least 1 new lesion.

Statistical Analysis
All statistical analyses were performed in R statistical and com-
puting software, Version 4.1.2 (http://www.r-project.org).26 We

were interested in the detection of $1
new lesion at a subject level. A change
in size of existing lesions (growth or
shrinkage) and lesions of ,15 mm3

was excluded from the analysis. This
minimum lesion volume cutoff was cal-
culated assuming a spherical lesion
shape with a diameter of 3mm (3 vox-
els on our FLAIR image) using the for-
mula Vmin ¼ pd3 / 6 ¼ 14.1 mm3,
which is in accordance with the cur-
rently accepted minimum lesion
dimension on MR imaging.1 For each
subject and each method (Reader, SDC,
and Reader 1 SDC), a binary indicator
of the incidence of new lesions was cre-
ated. Contingency tables at a subject
level were investigated, and sensitivity,
specificity, and positive predictive value
(PPV) were assessed using the Reader1
SDC method as a reference. Exact bino-
mial 95% CIs were calculated for these
measures.27 Agreement among all the

methods was calculated with nonparametric bootstrapped 95%
CIs.28 For the Reader and SDC methods, the Breslow-Day test29

was used to test whether the OR was the same for the subject
group imaged on the same scanner versus the group imaged on
2 different scanners.

RESULTS
All 200 pairs of baseline and follow-up FLAIR scans were inter-
pretable. Of these, 80 pairs (40.0%) were acquired on the same
MR imaging scanner. The fully-automated SDC algorithm
detected 86 subjects (43.0%) with at least 1 potential new lesion.
The semiautomated Reader 1 SDC method, in which 2 readers
identified new lesions by comparing the 2 longitudinally regis-
tered FLAIR images with visual assistance from SDC showing
potential new lesions (Fig 1), detected 41 subjects (20.5%) with at
least 1 new lesion. After excluding lesions of,15 mm3, Reader1
SDC found 30 individuals (15.0%) with new lesions. In compari-
son, the traditional Reader method, performed by radiologists in
the routine clinical workflow, identified 20 subjects (10.0%) with
at least 1 new lesion.

Table 1 shows the contingency table for subject-level detection
of new lesions on FLAIR images obtained by the Reader and SDC
methods using the Reader 1 SDC method as a reference (note
that lesions of,15 mm3 were excluded from the statistical analy-
sis for SDC and Reader 1 SDC methods, while the Reader
method did not provide information on lesion size). In 200 cases
of MS, Reader failed to detect new lesions in 14/30 individuals,
resulting in a moderate sensitivity of 0.53 (95% CI, 0.34–0.72),
with an excellent specificity of 0.98 (95% CI, 0.94–0.99) and a
good PPV of 0.80 (95% CI, 0.56–0.94). Of these 14 cases, 13
(92.9%) had only 1 new lesion and one (7.1%) had 2 new lesions.
Most of these lesions were either periventricular (9/15, 60%) or in the
central semiovale (5/15, 33%). The 4 subjects who were identified as
having at least 1 new lesion by Reader but not by Reader 1 SDC

FIG 1. Longitudinal axial FLAIR images acquired from a patient with MS approximately
10.5months apart, showing an example of 3 new lesions detected by human readers who were
assisted visually by the SDC algorithm, which delineates brain areas containing potential new
lesions for human confirmation (red boxes) (referred to as Reader1 SDC method).
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in Table 1 were all found to have new lesions less than the 15-mm3

cutoff. In comparison, SDC was able to detect all 30/30 patients
with at least 1 new lesion, achieving a perfect sensitivity of 1.00
(95% CI, 0.88–1.00), though at the cost of a lower specificity of 0.67
(95% CI, 0.59–0.74) and a lower PPV of 0.35 (95% CI, 0.25–0.46).
The agreement on a subject level was found to be 0.91 (95% CI,
0.87–0.95) between Reader1 SDC and Reader; 0.72 (95% CI, 0.66–
0.78) between Reader 1 SDC and SDC; and 0.64 (95% CI, 0.57–
0.71) between Reader and SDC.

Table 2 shows the contingency tables for subject-level detec-
tion of new FLAIR lesions in the 2 groups of subjects who were
imaged on the same scanner (80/200) and on 2 different scanners
(120/200). Reader was found to perform better on FLAIR images
acquired on the same scanner compared with those acquired on
different scanners (sensitivity, 0.67; 95% CI, 0.38–0.88, versus
0.40; 95% CI, 0.16–0.68; specificity, 1.00; 95% CI, 0.94–1.00, ver-
sus 0.96; 95% CI, 0.91–0.99; and PPV 1.00; 95% CI, 0.69–1.00,
versus 0.60; 95% CI, 0.26–0.88). While SDC detected 15/15
patients with at least 1 new lesion (sensitivity, 1.00; 95% CI, 0.78–
1.00) in both groups, SDC correctly detected 49/65 patients with-
out a new lesion (specificity, 0.75; 95% CI, 0.63–0.85) in the
group scanned on the same scanner but only 65/105 patients
without a new lesion (specificity, 0.62; 95% CI, 0.52–0.71) in the
group scanned on 2 different scanners. Using the Breslow-Day
test, we found that the OR for Reader versus Reader 1 SDC

differed across the group imaged on the same scanner and the
one imaged on 2 different scanners (P¼ .036), indicating a differ-
ent performance. On the other hand, we did not find a statisti-
cally significant difference in the OR for the SDC versus Reader
1 SDC case with regard to scanner change (P¼ .762).

Figure 2 shows examples of 4 new lesions of various sizes and
locations from 4 different subjects with MS that were identified by
SDC and confirmed by Reader 1 SDC but were not detected by
Reader according to the radiology report. Figure 3 shows examples
of 2 new punctate lesions, both of which were gadolinium-enhanc-
ing, that were identified by Reader in the clinical workflow but
were not detected by SDC and Reader 1 SDC after applying a
minimum lesion volume threshold of 15 mm3.

On average, the longitudinal FLAIR registration took 120.6
(SD, 10.7) seconds, and the SDC new lesion detection took 2.5
(SD, 0.3) seconds per case.

DISCUSSION
In this single-center study evaluating the utility of the automated
SDC algorithm in assisting human readers to detect new lesions
on longitudinal FLAIR images, we found that SDC was able to
provide a perfect new lesion-detection sensitivity on a subject
level. SDC achieved this excellent level of detection sensitivity
while providing a moderate subject-level specificity of 0.67
(meaning about 2 of every 3 subjects without new lesion activity
were correctly classified). These operating characteristics allow
SDC to be used as a valuable screening tool and could accelerate
the interpretation time of cases in which no new lesions are iden-
tified by SDC. In our study, for example, 114 of 200 patients had
no new lesions on follow-up confirmed by SDC, suggesting that a
more rapid expert human review of these cases (57% of our entire
cohort) may be feasible. Such an increase in efficiency may enable
expert human readers to allocate more time to interpret MR
imaging cases flagged by SDC as being potentially positive for
new lesions.

In the conventional radiology workflow, detecting new
lesions that formed between 2 longitudinal scans of patients
with MS is often performed by radiologists and other clinicians

manually on a PACS monitor by com-
paring a large number of paired-but-
imperfectly aligned FLAIR images.
This approach is often time-consum-
ing, mentally demanding, and error-
prone, especially if there is a substantial
image misalignment due to the differ-
ence in head orientation between the 2
scans. SDC overcomes these challenges
by providing an automated detection of
potential new lesions, which are then vis-
ually indicated to the reader on a pair of
longitudinally registered images (Fig 1).
Conceptually, SDC is formulated as an
optimal change detector applied to the
subtraction image, which can be proved
mathematically by the Neyman-Pearson
lemma to provide the best detection
power for a given false-positive rate.30

Table 1: Contingency table comparing the subject-level detection
of new lesions obtained from longitudinal FLAIR images of 200
patients with MS using the Reader (manual), SDC (fully automated),
and Reader+ SDC (semiautomated) methodsa

Reader + SDC

TotalNew Lesions No New Lesions
Reader New Lesions 16 4 20

No new lesions 14 166 180
SDC New lesions 30 56 86

No new lesions 0 114 114
Total 30 170 200

a Reader 1 SDC was considered a reference method to provide the ground truth
for comparison.

Table 2: Contingency table comparing the subject-level detection of new lesions
obtained from longitudinal FLAIR images acquired on the same MR imaging scanner
from 80 patients with MS and those acquired on 2 different scanners from 120 patients
with MS using the Reader (manual), SDC (fully automated), and Reader + SDC (semiau-
tomated) methods

Reader + SDC

TotalNew Lesions No New Lesions
Same MR imaging scanner
from 80 patients with MS
Reader New lesions 10 0 10

No new lesions 5 65 70
SDC New lesions 15 16 31

No new lesions 0 49 49
Total 15 65 80

Two different scanners from
120 patients with MS
Reader New lesions 6 4 10

No new lesions 9 101 110
SDC New lesions 15 40 55

No new lesions 0 65 65
Total 15 105 120
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By design, SDC mimics a human reader in 2 key aspects:
First, it applies an adaptive intensity threshold to the subtraction
image on the basis of the level of noise in the image. For example,
the threshold for the longitudinal signal change is automatically
increased by SDC for more noisy images, which can be regarded
as equivalent to setting a higher level of trust as often performed
by a human reader when dealing with noise. Second, SDC uses
signal from voxels in a local neighborhood to calculate the test
statistic, helping to increase the detection reliability. Similar to
change detection by humans, spatially spurious signals on the
subtraction image are encoded by the algorithm to have a lower
likelihood of being identified as true change. By virtue of being

capable of operating at a very high sensitivity and a reasonable
specificity, SDC enables the new lesion identification problem to
be shifted from the traditionally difficult task of locating new
lesions on unmarked images to a much easier task of confirming
true-positives and eliminating false-positives in areas already
marked by SDC. Therefore, SDC has a great potential to shorten
new-lesion detection time while reducing reader fatigue.

Several studies have demonstrated the benefits of detecting
new lesions on a subject level on longitudinally registered or
subtracted standard 1-mm isotropic 3D FLAIR images. A study
by Galletto Pregliasco et al,15 performed in 94 patients with MS,
showed that using an automated coregistration-fusion method

FIG 2. Examples of new lesions varying in size and location on longitudinal FLAIR images obtained from 4 different subjects with MS. These
lesions were initially identified by SDC (marked by red boxes) and later confirmed by the Reader1 SDC method but were not detected by the
Reader method using the conventional radiology workflow.

FIG 3. Examples of new punctate lesions (arrows) on longitudinal FLAIR images acquired from 2 different subjects with MS, identified by the
Reader method in the clinical workflow but not detected by the SDC and Reader1 SDC methods after applying a minimum lesion volume cut-
off of 15 mm3. Both lesions were enhancing on the postgadolinium T1-weighted images.

AJNR Am J Neuroradiol 44:649–55 Jun 2023 www.ajnr.org 653



improved the detection rate of subjects with at least 1 new lesion
from 46% to 59%. In another study conducted by Eichinger et
al,13 in 106 patients with MS, 58% of subjects were identified as
having at least 1 new lesion on the FLAIR subtraction image, with
a similar proportion (59%) identified using the conventional
reading method. In this study of 200 patients with MS, we saw an
improvement from 8% by Reader to 15% by Reader 1 SDC in
the subject-level detection rate using a minimum lesion volume
threshold of 15 mm3. The observed relatively rare event of a new
lesion occurring in our cohort is likely related to different patient
characteristics.

Compared with the emerging neural network–based deep
learning approaches for new lesion detection, the SDC algorithm
does not require data labeling and specialized hardware (such as a
powerful graphics processing unit) for network training. SDC can
also be used as a computer-assisted detection and segmentation
tool to help humans create labeled image data for network train-
ing more efficiently. In addition to the ease of implementation,
SDC provides relatively fast processing of the subtraction image,
taking only a few seconds per case using our Matlab implementa-
tion, which can be further improved for interactive use by a C/
C11 implementation. However, the longitudinal registration
step to generate the subtraction image takes about 2minutes per
case in our processing pipeline. The development of rapid image
registration algorithms31-33 will, therefore, be essential for a suc-
cessful deployment of SDC in a routine interactive workflow.
Alternatively, SDC can be implemented as part of the image-recon-
struction process, assuming that images from the prior study
are available on the scanner. Further studies are needed to
evaluate the clinical feasibility of these approaches.

The coregistration steps involved in the SDC processing pipe-
line are key elements of the SDC approach and offer a highly pre-
cise registration not possible in routine image-interpretation
software solutions embedded in clinical PACS systems. In our
pipeline implementation, we chose to perform longitudinal
FLAIR image registration by registering the image to the T1-
weighted half-space for 2 reasons: 1) The T1-weighted image has
the same resolution (1-mm isotropic) but much better GM/WM
contrast than the FLAIR image, and 2) in our data, the T1-
weighted image has less noise than the FLAIR image because T1-
weighted imaging was acquired with an acceleration factor of 2,
while FLAIR was acquired with an acceleration factor of 4 (to
keep the scan time reasonable). Consequently, the longitudinal
registration was found to be generally more accurate when using
T1-weighted images rather than FLAIR images. While a 1-mm
isotropic 3D T1-weighted sequence is part of the MS brain MR
imaging protocol recommended by the most recent clinical con-
sensus,3 performing direct registration between the 2 longitudinal
FLAIR images is a viable option when such T1-weighted images
are not available.

This study has several limitations. First, the ground truth was
determined on the basis of expert readings from only 1 experi-
enced board-certified neuroradiologist in consensus with an MR
imaging physicist with expertise in MS brain image analysis.
Furthermore, because these readers were aware of the use of
SDC, our study design was unable to fully eliminate the possibil-
ity of reader bias. While this study design is appropriate for the

current early-stage evaluation of SDC technology development,
the diagnostic performance metrics such as sensitivity and speci-
ficity reported in this study require further clinical validation in
future multireader multicase studies34 involving multiple board-
certified radiologists and using a clinical consensus as the crite-
rion standard. This is a key validation step to ensure that image-
analysis techniques are ready for regulatory approval and clinical
adoption.

Second, intracortical and subpial GM lesions were not con-
sidered because these lesions are difficult to visualize reliably
with existing routine 3T imaging sequences, including FLAIR.35

Third, in the current study design, the Reader method was per-
formed in the routine clinical workflow by readers different
from those involved in the Reader1 SDC method. These differ-
ences make it difficult to determine the clinical significance, if
any, of discrepancies in new lesion identification noted between
the clinical radiologic report and retrospectively performed
SDC-enhanced readings. For example, the radiologist issuing
the clinical report in the Reader method had real-time access to
the electronic health record and contrast-enhanced imaging
while being subject to time constraints imposed in the clinical
workflow and being responsible for total brain MR imaging
interpretation, not only new lesion detection on FLAIR.

While our study design allows a direct comparison of SDC
with the radiology report, regarded as a clinically established
benchmark, future work will be focused on integrating the SDC
algorithm into the clinical workflow, which will allow prospective
comparison studies to be performed in a real-world setting. In
the context of active MS, this will also enable the comparison of
gadolinium-based T1-weighted sequences with emerging non-
contrast approaches for new acute lesion detection such as those
combining FLAIR subtraction with quantitative susceptibility
mapping.36 Fourth, a minimum lesion volume cutoff of 15 mm3

was used to mitigate the effect of noise on the false-positive rate
of the SDC algorithm. Such punctate MS lesions are often consid-
ered inconsequential,1 though further evidence on their role in
the disease progression and outcome may be needed. Fifth, the
PACS system used for clinical interpretations was not equipped
with the capability to adjust for differences in scan angle or
patient positioning or to coregister 3D images to enable section-
by-section comparisons accurately. This capability is being
enhanced in more modern PACS systems but was not readily
available in the version of the PACS system used during the time
of the study scanning. Sixth, validation on FLAIR images
acquired on MR imaging scanners from other vendors or with
different acquisition parameters is very important for successful
clinical translation of SDC and will be addressed in a future study.
Finally, linear longitudinal brain registration was used in this
study, which was deemed sufficiently accurate for the annual fol-
low-up interval in our cohort but may not capture nonlinear
changes in the brain morphology during a longer interscan pe-
riod. The use of a deformable motion model in the registration
algorithm may be considered in such scenario.12,24

CONCLUSIONS
The SDC algorithm can serve as a time-saving screening tool to
assist human readers in verifying 3D FLAIR images of patients
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with MS with suspected new lesions. Our promising results war-
rant further evaluation of SDC in prospective multireader clinical
studies.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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