Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleArtificial Intelligence

Predicting Antiseizure Medication Treatment in Children with Rare Tuberous Sclerosis Complex–Related Epilepsy Using Deep Learning

Haifeng Wang, Zhanqi Hu, Dian Jiang, Rongbo Lin, Cailei Zhao, Xia Zhao, Yihang Zhou, Yanjie Zhu, Hongwu Zeng, Dong Liang, Jianxiang Liao and Zhicheng Li
American Journal of Neuroradiology December 2023, 44 (12) 1373-1383; DOI: https://doi.org/10.3174/ajnr.A8053
Haifeng Wang
aFrom the Research Center for Medical Artificial Intelligence (H.W., D.J., Y. Zhou, D.L., Z.L.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
bShenzhen College of Advanced Technology (H.W., D.J., Y.Zhu, D.L., Z.L.), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Haifeng Wang
Zhanqi Hu
dDepartment of Neurology (Z.H., R.L., X.Z., J.L.), Shenzhen Children's Hospital, Shenzhen, Guangdong, China
eDepartment of Pediatric Neurology (Z.H.), Boston Children's Hospital, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Zhanqi Hu
Dian Jiang
aFrom the Research Center for Medical Artificial Intelligence (H.W., D.J., Y. Zhou, D.L., Z.L.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
bShenzhen College of Advanced Technology (H.W., D.J., Y.Zhu, D.L., Z.L.), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Dian Jiang
Rongbo Lin
dDepartment of Neurology (Z.H., R.L., X.Z., J.L.), Shenzhen Children's Hospital, Shenzhen, Guangdong, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Rongbo Lin
Cailei Zhao
fDepartment of Radiology (C.Z., H.Z.), Shenzhen Children's Hospital, Shenzhen, Guangdong, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Cailei Zhao
Xia Zhao
dDepartment of Neurology (Z.H., R.L., X.Z., J.L.), Shenzhen Children's Hospital, Shenzhen, Guangdong, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Xia Zhao
Yihang Zhou
aFrom the Research Center for Medical Artificial Intelligence (H.W., D.J., Y. Zhou, D.L., Z.L.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
gResearch Department (Y. Zhou), Hong Kong Sanatorium and Hospital, Hong Kong, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yanjie Zhu
bShenzhen College of Advanced Technology (H.W., D.J., Y.Zhu, D.L., Z.L.), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
cPaul C. Lauterbur Research Center for Biomedical Imaging (Y.Zhu, D.L.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yanjie Zhu
Hongwu Zeng
fDepartment of Radiology (C.Z., H.Z.), Shenzhen Children's Hospital, Shenzhen, Guangdong, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hongwu Zeng
Dong Liang
aFrom the Research Center for Medical Artificial Intelligence (H.W., D.J., Y. Zhou, D.L., Z.L.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
bShenzhen College of Advanced Technology (H.W., D.J., Y.Zhu, D.L., Z.L.), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
cPaul C. Lauterbur Research Center for Biomedical Imaging (Y.Zhu, D.L.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Dong Liang
Jianxiang Liao
dDepartment of Neurology (Z.H., R.L., X.Z., J.L.), Shenzhen Children's Hospital, Shenzhen, Guangdong, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jianxiang Liao
Zhicheng Li
aFrom the Research Center for Medical Artificial Intelligence (H.W., D.J., Y. Zhou, D.L., Z.L.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
bShenzhen College of Advanced Technology (H.W., D.J., Y.Zhu, D.L., Z.L.), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Zhicheng Li
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Randle SC
    . Tuberous sclerosis complex: a review. Pediatr Ann 2017;46:e166–171 doi:10.3928/19382359-20170320-01 pmid:28414398
    CrossRefPubMed
  2. 2.↵
    1. Holmes GL,
    2. Stafstrom CE
    ; Tuberous Sclerosis Study Group. Tuberous sclerosis complex and epilepsy: recent developments and future challenges. Epilepsia 2007;48:617–30 doi:10.1111/j.1528-1167.2007.01035.x pmid:17386056
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Chu-Shore CJ,
    2. Major P,
    3. Camposano S, et al
    . The natural history of epilepsy in tuberous sclerosis complex. Epilepsia 2010;51:1236–41 doi:10.1111/j.1528-1167.2009.02474.x pmid:20041940
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Słowińska M,
    2. Jóźwiak S,
    3. Peron A, et al
    . Early diagnosis of tuberous sclerosis complex: a race against time—how to make the diagnosis before seizures? Orphanet J Rare Dis 2018;13:25 doi:10.1186/s13023-018-0764-z pmid:29378663
    CrossRefPubMed
  5. 5.↵
    1. Henske EP,
    2. Jóźwiak S,
    3. Kingswood JC, et al
    . Tuberous sclerosis complex. Nat Rev Dis Primers 2016;2:16035 doi:10.1038/nrdp.2016.35 pmid:27226234
    CrossRefPubMed
  6. 6.↵
    1. Strzelczyk A,
    2. Rosenow F,
    3. Zollner JP, et al
    . Epidemiology, healthcare resource use, and mortality in patients with tuberous sclerosis complex: a population-based study on German health insurance data. Seizure 2021;91:287–95 doi:10.1016/j.seizure.2021.06.027 pmid:34265583
    CrossRefPubMed
  7. 7.↵
    1. Jansen FE,
    2. van Huffelen AC,
    3. Bourez-Swart M, et al
    . Consistent localization of interictal epileptiform activity on EEGs of patients with tuberous sclerosis complex. Epilepsia 2005;46:415–19 doi:10.1111/j.0013-9580.2005.31704.x pmid:15730539
    CrossRefPubMed
  8. 8.↵
    1. Curatolo P,
    2. Nabbout R,
    3. Lagae L, et al
    . Management of epilepsy associated with tuberous sclerosis complex: updated clinical recommendations. Eur J Paediatr Neurol 2018;22:738–48 doi:10.1016/j.ejpn.2018.05.006 pmid:29880258
    CrossRefPubMed
  9. 9.↵
    1. van der Poest Clement E,
    2. Jansen FE,
    3. Braun KP, et al
    . Update on drug management of refractory epilepsy in tuberous sclerosis complex. Paediatr Drugs 2020;22:73–84 doi:10.1007/s40272-019-00376-0 pmid:31912454
    CrossRefPubMed
  10. 10.↵
    1. Jesmanas S,
    2. Norvainytė K,
    3. Gleiznienė R, et al
    . Different MRI-defined tuber types in tuberous sclerosis complex: quantitative evaluation and association with disease manifestations. Brain Dev 2018;40:196–204 doi:10.1016/j.braindev.2017.11.010 pmid:29258718
    CrossRefPubMed
  11. 11.↵
    1. Tong XZ,
    2. Wang XF,
    3. Qin L, et al
    . Vagus nerve stimulation for drug-resistant epilepsy induced by tuberous sclerosis complex. Epilepsy Behav 2022;126:108431 doi:10.1016/j.yebeh.2021.108431 pmid:34883463
    CrossRefPubMed
  12. 12.↵
    1. Yang J,
    2. Zhao C,
    3. Su S, et al
    . Machine Learning in Epilepsy Drug Treatment Outcome Prediction Using Multi-modality Data in Children with Tuberous Sclerosis Complex. In: 2020 6th International Conference on Big Data and Information Analytics (BigDIA). December 4-6, 2020. Shenzhen, China doi:10.1109/BigDIA51454.2020.00024
  13. 13.↵
    1. Russo C,
    2. Nastro A,
    3. Cicala D, et al
    . Neuroimaging in tuberous sclerosis complex. Childs Nerv Syst 2020;36:2497–509 doi:10.1007/s00381-020-04705-4 pmid:32519125
    CrossRefPubMed
  14. 14.↵
    1. Sanchez Fernandez I,
    2. Yang E,
    3. Calvachi P, et al
    ; TACERN Study Group. Deep learning in rare disease: detection of tubers in tuberous sclerosis complex. PLoS One 2020;15:e0232376 doi:10.1371/journal.pone.0232376 pmid:32348367
    CrossRefPubMed
  15. 15.↵
    1. Hu J,
    2. Qing Z,
    3. Liu R, et al
    . Deep learning-based classification and voxel-based visualization of frontotemporal dementia and Alzheimer's disease. Front Neurosci 2020;14:626154 doi:10.3389/fnins.2020.626154 pmid:33551735
    CrossRefPubMed
  16. 16.↵
    1. Spasov S,
    2. Passamonti L,
    3. Duggento A, et al
    ; Alzheime's Disease Neuroimaging Initiative. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease. Neuroimage 2019;189:276–87 doi:10.1016/j.neuroimage.2019.01.031 pmid:30654174
    CrossRefPubMed
  17. 17.↵
    1. Kim H,
    2. Lee Y,
    3. Kim YH, et al
    . Deep learning-based method to differentiate neuromyelitis optica spectrum disorder from multiple sclerosis. Front Neurol 2020;11:599042 doi:10.3389/fneur.2020.599042 pmid:33329357
    CrossRefPubMed
  18. 18.↵
    1. Eweje FR,
    2. Bao B,
    3. Wu J, et al
    . Deep learning for classification of bone lesions on routine MRI. EBioMedicine 2021;68:103402 doi:10.1016/j.ebiom.2021.103402 pmid:34098339
    CrossRefPubMed
  19. 19.↵
    1. Grossman R,
    2. Haim O,
    3. Abramov S, et al
    . Differentiating small-cell lung cancer from non-small-cell lung cancer brain metastases based on MRI using efficientnet and transfer learning approach. Technol Cancer Res Treat 2021;20:153303382110049 doi:10.1177/15330338211004919 pmid:34030542
    CrossRefPubMed
  20. 20.↵
    1. Jonsson BA,
    2. Bjornsdottir G,
    3. Thorgeirsson TE, et al
    . Brain age prediction using deep learning uncovers associated sequence variants. Nat Commun 2019;10:5409 doi:10.1038/s41467-019-13163-9 pmid:31776335
    CrossRefPubMed
  21. 21.↵
    1. Peng H,
    2. Gong W,
    3. Beckmann CF, et al
    . Accurate brain age prediction with lightweight deep neural networks. Med Image Anal 2021;68:101871 doi:10.1016/j.media.2020.101871 pmid:33197716
    CrossRefPubMed
  22. 22.↵
    1. An S,
    2. Malhotra K,
    3. Dilley C, et al
    . Predicting drug-resistant epilepsy: a machine learning approach based on administrative claims data. Epilepsy Behav 2018;89:118–25 doi:10.1016/j.yebeh.2018.10.013 pmid:30412924
    CrossRefPubMed
  23. 23.↵
    1. Luckett PH,
    2. Maccotta L,
    3. Lee JJ, et al
    . Deep learning resting state fMRI lateralization of temporal lobe epilepsy. Epilepsia 2022;63:1542–52 doi:10.1111/epi.17233 pmid:35320587
    CrossRefPubMed
  24. 24.↵
    1. Gleichgerrcht E,
    2. Munsell B,
    3. Bhatia S, et al
    . Deep learning applied to whole-brain connectome to determine seizure control after epilepsy surgery. Epilepsia 2018;59:1643–54 doi:10.1111/epi.14528 pmid:30098002
    CrossRefPubMed
  25. 25.↵
    1. Zhang Q,
    2. He Y,
    3. Qu T, et al
    . Delayed brain development of Rolandic epilepsy profiled by deep learning-based neuroanatomic imaging. Eur Radiol 2021;31:9628–37 doi:10.1007/s00330-021-08048-9 pmid:34018056
    CrossRefPubMed
  26. 26.↵
    1. He K,
    2. Zhang X,
    3. Ren S, et al
    . Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. June 27–30, 2016. Las Vagas, Nevada
  27. 27.↵
    1. Cole JH,
    2. Poudel RP,
    3. Tsagkrasoulis D, et al
    . Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage 2017;163:115–24 doi:10.1016/j.neuroimage.2017.07.059 pmid:28765056
    CrossRefPubMed
  28. 28.↵
    1. Meyer A,
    2. Chlebus G,
    3. Rak M, et al
    . Anisotropic 3D multi-stream CNN for accurate prostate segmentation from multi-planar MRI. Comput Methods Programs Biomed 2021;200:105821 doi:10.1016/j.cmpb.2020.105821 pmid:33218704
    CrossRefPubMed
  29. 29.↵
    1. Folego G,
    2. Weiler M,
    3. Casseb RF, et al
    . Alzheimer's disease detection through whole-brain 3D-CNN MRI. Front Bioeng Biotechnol 2020;8:534592 doi:10.3389/fbioe.2020.534592 pmid:33195111
    CrossRefPubMed
  30. 30.↵
    1. Grilli G,
    2. Moffa AP,
    3. Perfetto F, et al
    . Neuroimaging features of tuberous sclerosis complex and Chiari type I malformation: a rare association. J Pediatr Neurosci 2018;13:224–28 doi:10.4103/jpn.JPN_76_17 pmid:30090143
    CrossRefPubMed
  31. 31.↵
    1. Wiggermann V,
    2. Hernandez-Torres E,
    3. Traboulsee A, et al
    . FLAIR2: a combination of FLAIR and T2 for lmproved MS lesion detection. AJNR Am J Neuroradiol 2016;37:259–65 doi:10.3174/ajnr.A4514 pmid:26450539
    Abstract/FREE Full Text
  32. 32.↵
    1. Gabr RE,
    2. Hasan KM,
    3. Haque ME, et al
    . Optimal combination of FLAIR and T2-weighted MRI for improved lesion contrast in multiple sclerosis. J Magn Reson Imaging 2016;44:1293–300 doi:10.1002/jmri.25281 pmid:27126898
    CrossRefPubMed
  33. 33.↵
    1. Liang G,
    2. Xing X,
    3. Liu L, et al
    . Alzheimer's disease classification using 2D convolutional neural networks. Annu Int Conf IEEE Eng Med Biol Soc 2021;2021:3008–12 doi:10.1109/EMBC46164.2021.9629587 pmid:34891877
    CrossRefPubMed
  34. 34.↵
    1. Jiang D,
    2. Liao J,
    3. Zhao C, et al
    . Recognizing pediatric tuberous sclerosis complex based on multi-contrast MRI and deep weighted fusion network. Bioengineering (Basel) 2023;10:870 doi:10.3390/bioengineering10070870 pmid:37508897
    CrossRefPubMed
  35. 35.↵
    1. Hu Z,
    2. Jiang D,
    3. Zhao X, et al
    . Predicting drug treatment outcomes in childrens with tuberous sclerosis complex–related epilepsy: a clinical radiomics study. AJNR Am J Neuroradiol 2023;44:853–60 doi:10.3174/ajnr.A7911 pmid:37348968
    Abstract/FREE Full Text
  36. 36.↵
    1. Shinnar S
    . The new ILAE classification. Epilepsia 2010;51:715–17 doi:10.1111/j.1528-1167.2010.02542.x pmid:20394644
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Tan M,
    2. Efficientnet LQ
    . Rethinking model scaling for convolutional neural networks. In: Thirty-Sixth International Conference on Machine Learning. June 9-15, 2019. Long Beach, California
  38. 38.↵
    1. Jenkinson M,
    2. Beckmann CF,
    3. Behrens TE, et al
    . FSL. Neuroimage 2012;62:782–90 doi:10.1016/j.neuroimage.2011.09.015 pmid:21979382
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Isensee F,
    2. Schell M,
    3. Pflueger I, et al
    . Automated brain extraction of multisequence MRI using artificial neural networks. Hum Brain Mapp 2019;40:4952–64 doi:10.1002/hbm.24750 pmid:31403237
    CrossRefPubMed
  40. 40.↵
    1. Hsieh DT,
    2. Jennesson MM,
    3. Thiele EA
    . Epileptic spasms in tuberous sclerosis complex. Epilepsy Res 2013;106:200–10 doi:10.1016/j.eplepsyres.2013.05.003 pmid:23796861
    CrossRefPubMed
  41. 41.↵
    1. Lyu Q,
    2. Shan H,
    3. Steber C, et al
    . Multi-contrast super-resolution MRI through a progressive network. IEEE Trans Med Imaging 2020;39:2738–49 doi:10.1109/TMI.2020.2974858 pmid:32086201
    CrossRefPubMed
  42. 42.↵
    1. Jaworek-Korjakowska J,
    2. Brodzicki A,
    3. Cassidy B, et al
    . Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites. Cancers (Basel) 2021;13:6048 doi:10.3390/cancers13236048 pmid:34885158
    CrossRefPubMed
  43. 43.↵
    1. Gül Mert G,
    2. Altunbaşak Ş,
    3. Hergüner Ö, et al
    . Factors affecting epilepsy prognosis in patients with tuberous sclerosis. Childs Nerv Syst 2019;35:463–68 doi:10.1007/s00381-019-04066-7 pmid:30673834
    CrossRefPubMed
  44. 44.↵
    1. Kwan P,
    2. Brodie MJ
    . Early identification of refractory epilepsy. N Engl J Med 2000;342:314–19 doi:10.1056/NEJM200002033420503 pmid:10660394
    CrossRefPubMedWeb of Science
  45. 45.↵
    1. Jeong A,
    2. Nakagawa JA,
    3. Wong M
    . Predictors of drug-resistant epilepsy in tuberous sclerosis complex. J Child Neurol 2017;32:1092–98 doi:10.1177/0883073817737446 pmid:29129154
    CrossRefPubMed
  46. 46.
    1. Simonyan K,
    2. Zisserman A
    . Very deep convolutional networks for large-scale image recognition. arXiv 2014;1409:1556 doi:10.48550/arXiv.1409.1556
    CrossRef
  47. 47.
    1. Szegedy C,
    2. Liu W,
    3. Jia Y, et al
    . Going deeper with convolutions. arXiv 2014;1409:4802–98 doi:10.48550/arXiv.1409.4842
    CrossRef
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 44 (12)
American Journal of Neuroradiology
Vol. 44, Issue 12
1 Dec 2023
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Predicting Antiseizure Medication Treatment in Children with Rare Tuberous Sclerosis Complex–Related Epilepsy Using Deep Learning
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Haifeng Wang, Zhanqi Hu, Dian Jiang, Rongbo Lin, Cailei Zhao, Xia Zhao, Yihang Zhou, Yanjie Zhu, Hongwu Zeng, Dong Liang, Jianxiang Liao, Zhicheng Li
Predicting Antiseizure Medication Treatment in Children with Rare Tuberous Sclerosis Complex–Related Epilepsy Using Deep Learning
American Journal of Neuroradiology Dec 2023, 44 (12) 1373-1383; DOI: 10.3174/ajnr.A8053

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
DL for Tuberous Sclerosis Epilepsy Treatment
Haifeng Wang, Zhanqi Hu, Dian Jiang, Rongbo Lin, Cailei Zhao, Xia Zhao, Yihang Zhou, Yanjie Zhu, Hongwu Zeng, Dong Liang, Jianxiang Liao, Zhicheng Li
American Journal of Neuroradiology Dec 2023, 44 (12) 1373-1383; DOI: 10.3174/ajnr.A8053
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (2)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Artificial Intelligence as A Complementary Tool for Clincal Decision-Making in Stroke and Epilepsy
    Smit P. Shah, John D. Heiss
    Brain Sciences 2024 14 3
  • Genotypic and phenotypic analysis of Korean patients with tuberous sclerosis complex
    Hui Jin Shin, Sangbo Lee, Se Hee Kim, Joon Soo Lee, Ji Young Oh, Ara Ko, Hoon-Chul Kang
    Neurogenetics 2024 25 4

More in this TOC Section

  • AI-Enhanced Photon-Counting CT of Temporal Bone
  • An AI De-identification Method for Pediatric MRIs
  • Aneurysm Segmentation on MRI-TOF with AI
Show more Artificial Intelligence

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire