Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleNeuroimaging Physics/Functional Neuroimaging/CT and MRI Technology
Open Access

Specificity of Quantitative Functional Brain Mapping with Arterial Spin-Labeling for Preoperative Assessment

Giannina R. Iannotti, Isaure Nadin, Vladimira Ivanova, Quentin Tourdot, Agustina M. Lascano, Shahan Momjian, Karl L. Schaller, Karl O. Lovblad and Frederic Grouiller
American Journal of Neuroradiology November 2023, 44 (11) 1302-1308; DOI: https://doi.org/10.3174/ajnr.A8006
Giannina R. Iannotti
aFrom the Division of Neuroradiology, Diagnostic Department (G.R.I., K.O.L.), Geneva University Hospitals and University of Geneva, Geneva, Switzerland
bDepartment of Neurosurgery (G.R.I., I.N., V.I., S.M., K.L.S.), Geneva University Hospitals and University of Geneva, Geneva, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Giannina R. Iannotti
Isaure Nadin
bDepartment of Neurosurgery (G.R.I., I.N., V.I., S.M., K.L.S.), Geneva University Hospitals and University of Geneva, Geneva, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vladimira Ivanova
bDepartment of Neurosurgery (G.R.I., I.N., V.I., S.M., K.L.S.), Geneva University Hospitals and University of Geneva, Geneva, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Quentin Tourdot
cFaculty of Pharmacy (Q.T.), University of Montpellier, Montpellier, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Quentin Tourdot
Agustina M. Lascano
dDivision of Neurology (A.M.L.), Department of Clinical Neuroscience, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shahan Momjian
bDepartment of Neurosurgery (G.R.I., I.N., V.I., S.M., K.L.S.), Geneva University Hospitals and University of Geneva, Geneva, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Shahan Momjian
Karl L. Schaller
bDepartment of Neurosurgery (G.R.I., I.N., V.I., S.M., K.L.S.), Geneva University Hospitals and University of Geneva, Geneva, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karl O. Lovblad
aFrom the Division of Neuroradiology, Diagnostic Department (G.R.I., K.O.L.), Geneva University Hospitals and University of Geneva, Geneva, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Karl O. Lovblad
Frederic Grouiller
eSwiss Centre for Affective Sciences (F.G.), University of Geneva, Geneva, Switzerland
fCenter for Biomedical Imaging (F.G.), MRI University of Geneva Cognitive and Affective Neuroimaging Section, Geneva, Switzerland
gLaboratory of Neurology and Imaging of Cognition (F.G.), Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Frederic Grouiller
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Glover GH
    . Overview of functional magnetic resonance imaging. Neurosurg Clin N Am 2011;22:133–39, vii doi:10.1016/j.nec.2010.11.001 pmid:21435566
    CrossRefPubMed
  2. 2.↵
    1. Boubela RN,
    2. Kalcher K,
    3. Huf W, et al
    . fMRI measurements of amygdala activation are confounded by stimulus correlated signal fluctuation in nearby veins draining distant brain regions. Sci Rep 2015;5:10499 doi:10.1038/srep10499 pmid:25994551
    CrossRefPubMed
  3. 3.↵
    1. Fujiwara N,
    2. Sakatani K,
    3. Katayama Y, et al
    . Evoked-cerebral blood oxygenation changes in false-negative activations in BOLD contrast functional MRI of patients with brain tumors. Neuroimage 2004;21:1464–71 doi:10.1016/j.neuroimage.2003.10.042 pmid:15050571
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Giussani C,
    2. Roux FE,
    3. Ojemann J, et al
    . Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery 2010;66:113–20 doi:10.1227/01.NEU.0000360392.15450.C9 pmid:19935438
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Pittau F,
    2. Fahoum F,
    3. Zelmann R, et al
    . Negative BOLD response to interictal epileptic discharges in focal epilepsy. Brain Topogr 2013;26:627–40 doi:10.1007/s10548-013-0302-1 pmid:23793553
    CrossRefPubMed
  6. 6.↵
    1. Rathakrishnan R,
    2. Moeller F,
    3. Levan P, et al
    . BOLD signal changes preceding negative responses in EEG-fMRI in patients with focal epilepsy. Epilepsia 2010;51:1837–45 doi:10.1111/j.1528-1167.2010.02643.x pmid:20550554
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Carusone LM,
    2. Srinivasan J,
    3. Gitelman DR, et al
    . Hemodynamic response changes in cerebrovascular disease: implications for functional MR imaging. AJNR Am J Neuroradiol 2002;23:1222–28 pmid:12169483
    PubMedWeb of Science
  8. 8.↵
    1. Gerloff C,
    2. Grodd W,
    3. Altenmuller E, et al
    . Coregistration of EEG and fMRI in a simple motor task. Hum Brain Mapp 1996;4:199–209 doi:10.1002/(SICI)1097-0193(1996)4:3<199::AID-HBM4>3.0.CO;2-Z pmid:20408198
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Inuggi A,
    2. Filippi M,
    3. Chieffo R, et al
    . Motor area localization using fMRI-constrained cortical current density reconstruction of movement-related cortical potentials, a comparison with fMRI and TMS mapping. Brain Res 2010;1308:68–78 doi:10.1016/j.brainres.2009.10.042 pmid:19853590
    CrossRefPubMed
  10. 10.↵
    1. Lascano AM,
    2. Grouiller F,
    3. Genetti M, et al
    . Surgically relevant localization of the central sulcus with high-density somatosensory-evoked potentials compared with functional magnetic resonance imaging. Neurosurgery 2014;74:517–26 doi:10.1227/NEU.0000000000000298 pmid:24463494
    CrossRefPubMed
  11. 11.↵
    1. Pike GB
    . Quantitative functional MRI: concepts, issues and future challenges. Neuroimage 2012;62:1234–40 doi:10.1016/j.neuroimage.2011.10.046 pmid:22056462
    CrossRefPubMed
  12. 12.↵
    1. Hyder F,
    2. Sanganahalli BG,
    3. Herman P, et al
    . Neurovascular and neurometabolic couplings in dynamic calibrated fMRI: transient oxidative neuroenergetics for block-design and event-related paradigms. Front Neuroenergetics 2010;2:18 doi:10.3389/fnene.2010.00018 pmid:20838476
    CrossRefPubMed
  13. 13.↵
    1. Detre JA,
    2. Rao H,
    3. Wang DJ, et al
    . Applications of arterial spin labeled MRI in the brain. J Magn Reson Imaging 2012;35:1026–37 doi:10.1002/jmri.23581 pmid:22246782
    CrossRefPubMed
  14. 14.↵
    1. Krainik A,
    2. Villien M,
    3. Tropres I, et al
    . Functional imaging of cerebral perfusion. Diagn Interv Imaging 2013;94:1259–78 doi:10.1016/j.diii.2013.08.004 pmid:24011870
    CrossRefPubMed
  15. 15.↵
    1. Liu TT,
    2. Wong EC
    . A signal processing model for arterial spin labeling functional MRI. Neuroimage 2005;24:207–15 doi:10.1016/j.neuroimage.2004.09.047 pmid:15588612
    CrossRefPubMed
  16. 16.↵
    1. Hernandez-Garcia L,
    2. Aramendia-Vidaurreta V,
    3. Bolar DS, et al
    . Recent technical developments in ASL: a review of the state of the art. Magn Reson Med 2022;88:2021–42 doi:10.1002/mrm.29381 pmid:35983963
    CrossRefPubMed
  17. 17.↵
    1. Pinto J,
    2. Chappell MA,
    3. Okell TW, et al
    . Calibration of arterial spin labeling data-potential pitfalls in post-processing. Magn Reson Med 2020;83:1222–34 doi:10.1002/mrm.28000 pmid:31605558
    CrossRefPubMed
  18. 18.↵
    1. Wang Z
    . Improving cerebral blood flow quantification for arterial spin labeled perfusion MRI by removing residual motion artifacts and global signal fluctuations. Magn Reson Imaging 2012;30:1409–15 doi:10.1016/j.mri.2012.05.004 pmid:22789842
    CrossRefPubMed
  19. 19.↵
    1. Borogovac A,
    2. Habeck C,
    3. Small SA, et al
    . Mapping brain function using a 30-day interval between baseline and activation: a novel arterial spin labeling fMRI approach. J Cereb Blood Flow Metab 2010;30:1721–33 doi:10.1038/jcbfm.2010.89 pmid:20648039
    CrossRefPubMed
  20. 20.↵
    1. Stewart SB,
    2. Koller JM,
    3. Campbell MC, et al
    . Arterial spin labeling versus BOLD in direct challenge and drug-task interaction pharmacological fMRI. PeerJ 2014;2:e687 doi:10.7717/peerj.687 pmid:25538867
    CrossRefPubMed
  21. 21.↵
    1. Hoogenraad FG,
    2. Pouwels PJ,
    3. Hofman MB, et al
    . Quantitative differentiation between BOLD models in fMRI. Magn Reson Med 2001;45:233–46 doi:10.1002/1522-2594(200102)45:2<233::AID-MRM1032>3.0.CO;2-W pmid:11180431
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Hassanpour MS,
    2. Yan L,
    3. Wang DJ, et al
    . How the heart speaks to the brain: neural activity during cardiorespiratory interoceptive stimulation. Philos Trans R Soc Lond B Biol Sci 2016;371:20160017 doi:10.1098/rstb.2016.0017 pmid:28080974
    CrossRefPubMed
  23. 23.↵
    1. Tancredi FB,
    2. Lajoie I,
    3. Hoge RD
    . Test-retest reliability of cerebral blood flow and blood oxygenation level-dependent responses to hypercapnia and hyperoxia using dual-echo pseudo-continuous arterial spin labeling and step changes in the fractional composition of inspired gases. J Magn Reson Imaging 2015;42:1144–57 doi:10.1002/jmri.24878 pmid:25752936
    CrossRefPubMed
  24. 24.↵
    1. Hodkinson DJ,
    2. Krause K,
    3. Khawaja N, et al
    . Quantifying the test-retest reliability of cerebral blood flow measurements in a clinical model of on-going post-surgical pain: a study using pseudo-continuous arterial spin labelling. Neuroimage Clin 2013;3:301–10 doi:10.1016/j.nicl.2013.09.004 pmid:24143296
    CrossRefPubMed
  25. 25.↵
    1. Gardumi A,
    2. Ivanov D,
    3. Havlicek M, et al
    . Tonotopic maps in human auditory cortex using arterial spin labeling. Hum Brain Mapp 2017;38:1140–54 doi:10.1002/hbm.23444 pmid:27790786
    CrossRefPubMed
  26. 26.↵
    1. Pimentel MA,
    2. Vilela P,
    3. Sousa I, et al
    . Localization of the hand motor area by arterial spin labeling and blood oxygen level-dependent functional magnetic resonance imaging. Hum Brain Mapp 2013;34:96–108 doi:10.1002/hbm.21418 pmid:22121040
    CrossRefPubMed
  27. 27.↵
    1. Storti SF,
    2. Galazzo IB,
    3. Pizzini FB, et al
    . Dual-echo ASL based assessment of motor networks: a feasibility study. J Neural Eng 2018;15:026018 doi:10.1088/1741-2552/aa8b27 pmid:28884708
    CrossRefPubMed
  28. 28.↵
    1. Jann K,
    2. Orosz A,
    3. Dierks T, et al
    . Quantification of network perfusion in ASL cerebral blood flow data with seed based and ICA approaches. Brain Topogr 2013;26:569–80 doi:10.1007/s10548-013-0280-3 pmid:23508714
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Storti SF,
    2. Boscolo Galazzo I,
    3. Montemezzi S, et al
    . Dual-echo ASL contributes to decrypting the link between functional connectivity and cerebral blow flow. Hum Brain Mapp 2017;38:5831–44 doi:10.1002/hbm.23804 pmid:28885752
    CrossRefPubMed
  30. 30.↵
    1. Raoult H,
    2. Petr J,
    3. Bannier E, et al
    . Arterial spin labeling for motor activation mapping at 3T with a 32-channel coil: reproducibility and spatial accuracy in comparison with BOLD fMRI. Neuroimage 2011;58:157–67 doi:10.1016/j.neuroimage.2011.06.011 pmid:21689761
    CrossRefPubMed
  31. 31.↵
    1. Diekhoff S,
    2. Uludağ K,
    3. Sparing R, et al
    . Functional localization in the human brain: gradient-echo, spin-echo, and arterial spin-labeling fMRI compared with neuronavigated TMS. Hum Brain Mapp 2011;32:341–57 doi:10.1002/hbm.21024 pmid:20533563
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Faraco CC,
    2. Strother MK,
    3. Dethrage LM, et al
    . Dual echo vessel-encoded ASL for simultaneous BOLD and CBF reactivity assessment in patients with ischemic cerebrovascular disease. Magn Reson Med 2015;73:1579–92 doi:10.1002/mrm.25268 pmid:24757044
    CrossRefPubMed
  33. 33.↵
    1. Tak S,
    2. Wang DJ,
    3. Polimeni JR, et al
    . Dynamic and static contributions of the cerebrovasculature to the resting-state BOLD signal. Neuroimage 2014;84:672–80 doi:10.1016/j.neuroimage.2013.09.057 pmid:24099842
    CrossRefPubMed
  34. 34.↵
    1. McGonigle DJ,
    2. Howseman AM,
    3. Athwal BS, et al
    . Variability in fMRI: an examination of intersession differences. Neuroimage 2000;11:708–34 doi:10.1006/nimg.2000.0562 pmid:10860798
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Rossi S,
    2. Antal A,
    3. Bestmann S, et al
    ; basis of this article began with a Consensus Statement from the IFCN Workshop on Present, Future of TMS: Safety, Ethical Guidelines, Siena, October 17–20, 2018, updating through April 2020. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin Neurophysiol 2021;132:269–306 doi:10.1016/j.clinph.2020.10.003 pmid:33243615
    CrossRefPubMed
  36. 36.↵
    1. Rossini PM,
    2. Barker AT,
    3. Berardelli A, et al
    . Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 1994;91:79–92 doi:10.1016/0013-4694(94)90029-9 pmid:7519144
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Wang Z,
    2. Aguirre GK,
    3. Rao H, et al
    . Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx. Magn Reson Imaging 2008;26:261–69 doi:10.1016/j.mri.2007.07.003 pmid:17826940
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Aguirre GK,
    2. Detre JA,
    3. Zarahn E, et al
    . Experimental design and the relative sensitivity of BOLD and perfusion fMRI. Neuroimage 2002;15:488–500 doi:10.1006/nimg.2001.0990 pmid:11848692
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Vidyasagar R,
    2. Parkes LM
    . Reproducibility of functional MRI localization within the human somatosensory cortex. J Magn Reson Imaging 2011;34:1439–44 doi:10.1002/jmri.22758 pmid:21960411
    CrossRefPubMed
  40. 40.↵
    1. Sondergaard RE,
    2. Martino D,
    3. Kiss ZHT, et al
    . TMS motor mapping methodology and reliability: a structured review. Front Neurosci 2021;15:709368 doi:10.3389/fnins.2021.709368 pmid:34489629
    CrossRefPubMed
  41. 41.↵
    1. Lotze M,
    2. Kaethner RJ,
    3. Erb M, et al
    . Comparison of representational maps using functional magnetic resonance imaging and transcranial magnetic stimulation. Clin Neurophysiol 2003;114:306–12 doi:10.1016/s1388-2457(02)00380-2 pmid:12559238
    CrossRefPubMedWeb of Science
  42. 42.↵
    1. Numssen O,
    2. Zier AL,
    3. Thielscher A, et al
    . Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression. Neuroimage 2021;245:118654 doi:10.1016/j.neuroimage.2021.118654 pmid:34653612
    CrossRefPubMed
  43. 43.↵
    1. Takahashi S,
    2. Vajkoczy P,
    3. Picht T
    . Navigated transcranial magnetic stimulation for mapping the motor cortex in patients with Rolandic brain tumors. Neurosurg Focus 2013;34:E3 doi:10.3171/2013.1.FOCUS133 pmid:23544409
    CrossRefPubMed
  44. 44.↵
    1. Wilson M,
    2. Dadachanji H,
    3. Greenwell D
    . The motor homunculus: linking the past with the present. J Physiol 2021;599:1731–32 doi:10.1113/JP280982 pmid:33616918
    CrossRefPubMed
  45. 45.↵
    1. Penfield W,
    2. Boldrey E
    . Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 1937;60:389–443 doi:10.1093/brain/60.4.389
    CrossRef
  46. 46.↵
    1. Tieleman A,
    2. Deblaere K,
    3. Van Roost D, et al
    . Preoperative fMRI in tumour surgery. Eur Radiol 2009;19:2523–34 doi:10.1007/s00330-009-1429-z pmid:19430795
    CrossRefPubMed
  47. 47.↵
    1. Schweisfurth MA,
    2. Frahm J,
    3. Schweizer R
    . Individual fMRI maps of all phalanges and digit bases of all fingers in human primary somatosensory cortex. Front Hum Neurosci 2014;8:658 doi:10.3389/fnhum.2014.00658 pmid:25228867
    CrossRefPubMed
  48. 48.↵
    1. Kober H,
    2. Nimsky C,
    3. Moller M, et al
    . Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis. Neuroimage 2001;14:1214–28 doi:10.1006/nimg.2001.0909 pmid:11697953
    CrossRefPubMed
  49. 49.↵
    1. Christmann C,
    2. Ruf M,
    3. Braus DF, et al
    . Simultaneous electroencephalography and functional magnetic resonance imaging of primary and secondary somatosensory cortex in humans after electrical stimulation. Neurosci Lett 2002;333:69–73 doi:10.1016/s0304-3940(02)00969-2 pmid:12401562
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. Korvenoja A,
    2. Kirveskari E,
    3. Aronen HJ, et al
    . Sensorimotor cortex localization: comparison of magnetoencephalography, functional MR imaging, and intraoperative cortical mapping. Radiology 2006;241:213–22 doi:10.1148/radiol.2411050796 pmid:16908676
    CrossRefPubMedWeb of Science
  51. 51.↵
    1. Ulmer JL,
    2. Hacein-Bey L,
    3. Mathews VP, et al
    . Lesion-induced pseudo-dominance at functional magnetic resonance imaging: implications for preoperative assessments. Neurosurgery 2004;55:569–79; discussion 580–61 doi:10.1227/01.neu.0000134384.94749.b2 pmid:15335424
    CrossRefPubMedWeb of Science
  52. 52.↵
    1. Tomasi SO,
    2. Umana GE,
    3. Scalia G, et al
    . The superficial anastomosing veins of the human brain cortex: a microneurosurgical anatomical study. Front Surg 2021;8:817002 doi:10.3389/fsurg.2021.817002 pmid:35083275
    CrossRefPubMed
  53. 53.↵
    1. Fesl G,
    2. Braun B,
    3. Rau S, et al
    . Is the center of mass (COM) a reliable parameter for the localization of brain function in fMRI? Eur Radiol 2008;18:1031–37 doi:10.1007/s00330-008-0850-z pmid:18228024
    CrossRefPubMed
  54. 54.↵
    1. Kallioniemi E,
    2. Pitkanen M,
    3. Kononen M, et al
    . Localization of cortical primary motor area of the hand using navigated transcranial magnetic stimulation, BOLD and arterial spin labeling fMRI. J Neurosci Methods 2016;273:138–48 doi:10.1016/j.jneumeth.2016.09.002 pmid:27615740
    CrossRefPubMed
  55. 55.↵
    1. Alsop DC,
    2. Detre JA,
    3. Golay X, et al
    . Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 2015;73:102–16 doi:10.1002/mrm.25197 pmid:24715426
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 44 (11)
American Journal of Neuroradiology
Vol. 44, Issue 11
1 Nov 2023
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Specificity of Quantitative Functional Brain Mapping with Arterial Spin-Labeling for Preoperative Assessment
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Giannina R. Iannotti, Isaure Nadin, Vladimira Ivanova, Quentin Tourdot, Agustina M. Lascano, Shahan Momjian, Karl L. Schaller, Karl O. Lovblad, Frederic Grouiller
Specificity of Quantitative Functional Brain Mapping with Arterial Spin-Labeling for Preoperative Assessment
American Journal of Neuroradiology Nov 2023, 44 (11) 1302-1308; DOI: 10.3174/ajnr.A8006

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Quantitative Brain Mapping with ASL for Surgery
Giannina R. Iannotti, Isaure Nadin, Vladimira Ivanova, Quentin Tourdot, Agustina M. Lascano, Shahan Momjian, Karl L. Schaller, Karl O. Lovblad, Frederic Grouiller
American Journal of Neuroradiology Nov 2023, 44 (11) 1302-1308; DOI: 10.3174/ajnr.A8006
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • A Comprehensive Review of IA Imaging Modalities
  • Synthetic MRI based on 3D-QALAS MR Quantification
  • Delta wave MRI
Show more NEUROIMAGING PHYSICS/FUNCTIONAL NEUROIMAGING/CT AND MRI TECHNOLOGY

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire