Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain
Open Access

Validation of a Denoising Method Using Deep Learning–Based Reconstruction to Quantify Multiple Sclerosis Lesion Load on Fast FLAIR Imaging

T. Yamamoto, C. Lacheret, H. Fukutomi, R.A. Kamraoui, L. Denat, B. Zhang, V. Prevost, L. Zhang, A. Ruet, B. Triaire, V. Dousset, P. Coupé and T. Tourdias
American Journal of Neuroradiology August 2022, 43 (8) 1099-1106; DOI: https://doi.org/10.3174/ajnr.A7589
T. Yamamoto
aFrom the Institut de Bio-imagerie (T.Y., H.F., L.D., V.D., T.T.), University Bordeaux, Bordeaux, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Yamamoto
C. Lacheret
bNeuroimagerie Diagnostique et Thérapeutique (C.L., V.D., T.T.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Lacheret
H. Fukutomi
aFrom the Institut de Bio-imagerie (T.Y., H.F., L.D., V.D., T.T.), University Bordeaux, Bordeaux, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H. Fukutomi
R.A. Kamraoui
dLaboratoire Bordelais de Recherche en Informatique (R.A.K., P.C.), University Bordeaux, Le Centre National de la Recherche Scientifique, Bordeaux Institut National Polytechnique, Talence, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.A. Kamraoui
L. Denat
aFrom the Institut de Bio-imagerie (T.Y., H.F., L.D., V.D., T.T.), University Bordeaux, Bordeaux, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Denat
B. Zhang
eCanon Medical Systems Europe (B.Z.), Zoetermeer, the Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Zhang
V. Prevost
fCanon Medical Systems (V.P., B.T.), Tochigi, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for V. Prevost
L. Zhang
gCanon Medical Systems China (L.Z.), Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Zhang
A. Ruet
cService de Neurologie (A.R.), Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Ruet
B. Triaire
fCanon Medical Systems (V.P., B.T.), Tochigi, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Triaire
V. Dousset
aFrom the Institut de Bio-imagerie (T.Y., H.F., L.D., V.D., T.T.), University Bordeaux, Bordeaux, France
bNeuroimagerie Diagnostique et Thérapeutique (C.L., V.D., T.T.)
hNeurocentreMagendie (V.D., T.T.), University of Bordeaux, L’Institut National de la Santé et de la Recherche Médicale, Bordeaux, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for V. Dousset
P. Coupé
dLaboratoire Bordelais de Recherche en Informatique (R.A.K., P.C.), University Bordeaux, Le Centre National de la Recherche Scientifique, Bordeaux Institut National Polytechnique, Talence, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P. Coupé
T. Tourdias
aFrom the Institut de Bio-imagerie (T.Y., H.F., L.D., V.D., T.T.), University Bordeaux, Bordeaux, France
bNeuroimagerie Diagnostique et Thérapeutique (C.L., V.D., T.T.)
hNeurocentreMagendie (V.D., T.T.), University of Bordeaux, L’Institut National de la Santé et de la Recherche Médicale, Bordeaux, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Tourdias
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Compston A,
    2. Coles A
    . Multiple sclerosis. Lancet 2008;372:1502–17 doi:10.1016/S0140-6736(08)61620-7 pmid:18970977
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Thompson AJ,
    2. Banwell BL,
    3. Barkhof F, et al
    . Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018;17:162–73 doi:10.1016/S1474-4422(17)30470-2 pmid:29275977
    CrossRefPubMed
  3. 3.↵
    1. Ziemssen T,
    2. Derfuss T,
    3. de Stefano N, et al
    . Optimizing treatment success in multiple sclerosis. J Neurol 2016;263:1053–65 doi:10.1007/s00415-015-7986-y pmid:26705122
    CrossRefPubMed
  4. 4.↵
    1. Tan IL,
    2. Pouwels PJ,
    3. van Schijndel RA, et al
    . Isotropic 3D fast FLAIR imaging of the brain in multiple sclerosis patients: initial experience. Eur Radiol 2002;12:559–67 doi:10.1007/s00330-001-1170-8 pmid:11870470
    CrossRefPubMed
  5. 5.↵
    1. Traboulsee A,
    2. Simon JH,
    3. Stone L, et al
    . Revised Recommendations of the Consortium of MS Centers Task Force for a Standardized MRI Protocol and Clinical Guidelines for the Diagnosis and Follow-Up of Multiple Sclerosis. AJNR Am J Neuroradiol 2016;37:394–401 doi:10.3174/ajnr.A4539 pmid:26564433
    Abstract/FREE Full Text
  6. 6.↵
    1. Wattjes MP,
    2. Ciccarelli O,
    3. Reich DS, et al
    ; Magnetic Resonance Imaging in Multiple Sclerosis study group; Consortium of Multiple Sclerosis Centres; North American Imaging in Multiple Sclerosis Cooperative MRI guidelines working group. MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol 2021;20:653–70 doi:10.1016/S1474-4422(21)00095-8 pmid:34139157
    CrossRefPubMed
  7. 7.↵
    1. Feinberg DA,
    2. Hale JD,
    3. Watts JC, et al
    . Halving MR imaging time by conjugation: demonstration at 3.5 kG. Radiology 1986;161:527–31 doi:10.1148/radiology.161.2.3763926 pmid:3763926
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Deshmane A,
    2. Gulani V,
    3. Griswold MA, et al
    . Parallel MR imaging. J Magn Reson Imaging 2012;36:55–72 doi:10.1002/jmri.23639 pmid:22696125
    CrossRefPubMed
  9. 9.↵
    1. Barth M,
    2. Breuer F,
    3. Koopmans PJ, et al
    . Simultaneous multislice (SMS) imaging techniques. Magn Reson Med 2016;75:63–81 doi:10.1002/mrm.25897 pmid:26308571
    CrossRefPubMed
  10. 10.↵
    1. Toledano-Massiah S,
    2. Sayadi A,
    3. de Boer R, et al
    . Accuracy of the compressed sensing accelerated 3D-FLAIR sequence for the detection of MS plaques at 3T. AJNR Am J Neuroradiol 2018;39:454–58 doi:10.3174/ajnr.A5517 pmid:29348137
    Abstract/FREE Full Text
  11. 11.↵
    1. Tian C,
    2. Fei L,
    3. Zheng W, et al
    . Deep learning on image denoising: an overview. Neural Netw 2020;131:251–75 doi:10.1016/j.neunet.2020.07.025 pmid:32829002
    CrossRefPubMed
  12. 12.↵
    1. Bai W,
    2. Sanrona G,
    3. Wu G
    1. Manjón JV,
    2. Coupe P
    . MRI denoising using deep learning. In: Bai W, Sanrona G, Wu G, eds. Patch-Based Techniques in Medical Imaging. Springer-Verlag International Publishing 2018:12–19
  13. 13.
    1. Chaudhari AS,
    2. Fang Z,
    3. Kogan F, et al
    . Super-resolution musculoskeletal MRI using deep learning. Magn Reson Med 2018;80:2139–54 doi:10.1002/mrm.27178 pmid:29582464
    CrossRefPubMed
  14. 14.↵
    1. Kidoh M,
    2. Shinoda K,
    3. Kitajima M, et al
    . Deep learning based noise reduction for brain MR imaging: tests on phantoms and healthy volunteers. MRMS 2020;19:195–206 doi:10.2463/mrms.mp.2019-0018 pmid:31484849
    CrossRefPubMed
  15. 15.↵
    1. Marc Lebel R
    . Performance characterization of a novel deep learning-based MR image reconstruction pipeline. arXiv [eessIV] 2020 Aug 14. https://arxiv.org/abs/2008.06559. Accessed May 31, 2022
  16. 16.↵
    1. Drake-Pérez M,
    2. Delattre BM,
    3. Boto J, et al
    . Normal values of magnetic relaxation parameters of spine components with the synthetic MRI sequence. AJNR Am J Neuroradiol 2018;39:788–95 doi:10.3174/ajnr.A5566 pmid:29496723
    Abstract/FREE Full Text
  17. 17.↵
    1. Saranathan M,
    2. Worters PW,
    3. Rettmann DW, et al
    . Physics for clinicians: fluid-attenuated inversion recovery (FLAIR) and double inversion recovery (DIR) imaging. J Magn Reson Imaging 2017;46:1590–600 doi:10.1002/jmri.25737 pmid:28419602
    CrossRefPubMed
  18. 18.↵
    1. Fedorov A,
    2. Beichel R,
    3. Kalpathy-Cramer J, et al
    . 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 2012;30:1323–41 doi:10.1016/j.mri.2012.05.001 pmid:22770690
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Coupé P,
    2. Tourdias T,
    3. Linck P
    1. Coupé P,
    2. Tourdias T,
    3. Linck P, et al
    . LesionBrain: an online tool for white matter lesion segmentation. In: Coupé P, Tourdias T, Linck P. Patch-Based Techniques in Medical Imaging. September 15, 2018. https://doi.org/10.1007/978-3-030-00500-9_11. Accessed May 31, 2022
  20. 20.↵
    1. Manjón JV,
    2. Coupé P
    . volBrain: an online MRI brain volumetry system. Front Neuroinform 2016;10:30 doi:10.3389/fninf.2016.00030 pmid:27512372
    CrossRefPubMed
  21. 21.↵
    1. Commowick O,
    2. Istace A,
    3. Kain M, et al
    . Objective evaluation of multiple sclerosis lesion segmentation using a data management and processing infrastructure. Sci Rep 2018;8:13650 doi:10.1038/s41598-018-31911-7 pmid:30209345
    CrossRefPubMed
  22. 22.↵
    1. Wobbrock JO,
    2. Findlater L,
    3. Gergle D, et al
    . The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures. In: Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI '11). Vancourver, British Columbia, Canada. May 7–12, 2011 doi:10.1145/1978942.1978963
    CrossRef
  23. 23.↵
    1. Brisset JC,
    2. Kremer S,
    3. Hannoun S, et al
    . New OFSEP recommendations for MRI assessment of multiple sclerosis patients: special consideration for gadolinium deposition and frequent acquisitions. J Neuroradiol 2020;47:250–58 doi:10.1016/j.neurad.2020.01.083 pmid:32014494
    CrossRefPubMed
  24. 24.↵
    1. Mohan J,
    2. Krishnaveni V,
    3. Guo Y
    . A survey on the magnetic resonance image denoising methods. Biomed Signal Processing and Control 2014;9:56–69 doi:10.1016/j.bspc.2013.10.007
    CrossRef
  25. 25.↵
    1. Annavarapu A,
    2. Borra S
    . Development of magnetic resonance image de-noising methodologies: a comprehensive overview of the state-of-the-art. Smart Health 2020;18:100138 doi:10.1016/j.smhl.2020.100138
    CrossRef
  26. 26.↵
    1. Moreno López M,
    2. Frederick JM,
    3. Ventura J
    . Evaluation of MRI denoising methods using unsupervised learning. Front Artif Intell 2021;4:642731 doi:10.3389/frai.2021.642731 pmid:34151253
    CrossRefPubMed
  27. 27.↵
    1. Ilesanmi AE,
    2. Ilesanmi TO
    . Methods for image denoising using convolutional neural network: a review. Complex & Intelligent Systems 2020;7:2179–98 doi:10.1007/s40747-021-00428-4
    CrossRef
  28. 28.↵
    1. Lundervold AS,
    2. Lundervold A
    . An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 2019;29:102–27 doi:10.1016/j.zemedi.2018.11.002 pmid:30553609
    CrossRefPubMed
  29. 29.↵
    1. Benou A,
    2. Veksler R,
    3. Friedman A, et al
    . Ensemble of expert deep neural networks for spatio-temporal denoising of contrast-enhanced MRI sequences. Med Image Anal 2017;42:145–59 doi:10.1016/j.media.2017.07.006 pmid:28802145
    CrossRefPubMed
  30. 30.
    1. Yokota Y,
    2. Takeda C,
    3. Kidoh M, et al
    . Effects of deep learning reconstruction technique in high-resolution non-contrast magnetic resonance coronary angiography at a 3-Tesla machine. Can Assoc Radiol J 2021;72:120–27 doi:10.1177/0846537119900469 pmid:32070116
    CrossRefPubMed
  31. 31.↵
    1. Bash S,
    2. Wang L,
    3. Airriess C, et al
    . Deep learning enables 60% accelerated volumetric brain MRI while preserving quantitative performance: a prospective, multicenter, multireader trial. AJNR Am J Neuroradiol 2021;42:2130–37 doi:10.3174/ajnr.A7358 pmid:34824098
    Abstract/FREE Full Text
  32. 32.↵
    1. Gaitán MI,
    2. Shea CD,
    3. Evangelou IE, et al
    . Evolution of the blood-brain barrier in newly forming multiple sclerosis lesions. Ann Neurol 2011;70:22–29 doi:10.1002/ana.22472 pmid:21710622
    CrossRefPubMed
  33. 33.↵
    1. Jäckle K,
    2. Zeis T,
    3. Schaeren-Wiemers N, et al
    . Molecular signature of slowly expanding lesions in progressive multiple sclerosis. Brain 2020;143:2073–88 doi:10.1093/brain/awaa158 pmid:32577755
    CrossRefPubMed
  34. 34.↵
    1. Elliott C,
    2. Wolinsky JS,
    3. Hauser SL, et al
    . Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult Scler 2019;25:1915–25 doi:10.1177/1352458518814117 pmid:30566027
    CrossRefPubMed
  35. 35.↵
    1. Lu G,
    2. Beadnall HN,
    3. Barton J, et al
    . The evolution of “no evidence of disease activity” in multiple sclerosis. Mult Scler Relat Disord 2018;20:231–38 doi:10.1016/j.msard.2017.12.016 pmid:29579629
    CrossRefPubMed
  36. 36.↵
    1. Coupe P,
    2. Yger P,
    3. Prima S, et al
    . An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans Med Imaging 2008;27:425–41 doi:10.1109/TMI.2007.906087 pmid:18390341
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Danelakis A,
    2. Theoharis T,
    3. Verganelakis DA
    . Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging. Comput Med Imaging Graph 2018;70:83–100 doi:10.1016/j.compmedimag.2018.10.002 pmid:30326367
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 43 (8)
American Journal of Neuroradiology
Vol. 43, Issue 8
1 Aug 2022
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Validation of a Denoising Method Using Deep Learning–Based Reconstruction to Quantify Multiple Sclerosis Lesion Load on Fast FLAIR Imaging
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
T. Yamamoto, C. Lacheret, H. Fukutomi, R.A. Kamraoui, L. Denat, B. Zhang, V. Prevost, L. Zhang, A. Ruet, B. Triaire, V. Dousset, P. Coupé, T. Tourdias
Validation of a Denoising Method Using Deep Learning–Based Reconstruction to Quantify Multiple Sclerosis Lesion Load on Fast FLAIR Imaging
American Journal of Neuroradiology Aug 2022, 43 (8) 1099-1106; DOI: 10.3174/ajnr.A7589

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Deep Learning for MS Lesion Quantification
T. Yamamoto, C. Lacheret, H. Fukutomi, R.A. Kamraoui, L. Denat, B. Zhang, V. Prevost, L. Zhang, A. Ruet, B. Triaire, V. Dousset, P. Coupé, T. Tourdias
American Journal of Neuroradiology Aug 2022, 43 (8) 1099-1106; DOI: 10.3174/ajnr.A7589
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • DANTE-CAIPI Accelerated Contrast-Enhanced 3D T1: Deep Learning-Based Image Quality Improvement for Vessel Wall MRI
  • Crossref (10)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Medial septum: relevance for social memory
    Marilena Griguoli, Domenico Pimpinella
    Frontiers in Neural Circuits 2022 16
  • How far MS lesion detection and segmentation are integrated into the clinical workflow? A systematic review
    Federico Spagnolo, Adrien Depeursinge, Sabine Schädelin, Aysenur Akbulut, Henning Müller, Muhamed Barakovic, Lester Melie-Garcia, Meritxell Bach Cuadra, Cristina Granziera
    NeuroImage: Clinical 2023 39
  • Deep Learning-based Image Enhancement Techniques for Fast MRI in Neuroimaging
    Roh-Eul Yoo, Seung Hong Choi
    Magnetic Resonance in Medical Sciences 2024 23 3
  • Clinical applications of deep learning in neuroinflammatory diseases: A scoping review
    S. Demuth, J. Paris, I. Faddeenkov, J. De Sèze, P.-A. Gourraud
    Revue Neurologique 2025 181 3
  • Deep learning denoising reconstruction enables faster T2‐weighted FLAIR sequence acquisition with satisfactory image quality
    Matthew E Brain, Shalini Amukotuwa, Roland Bammer
    Journal of Medical Imaging and Radiation Oncology 2024 68 4
  • DANTE-CAIPI Accelerated Contrast-Enhanced 3D T1: Deep Learning–Based Image Quality Improvement for Vessel Wall MRI
    Mona Kharaji, Gador Canton, Yin Guo, Mohamad Hosaam Mosi, Zechen Zhou, Niranjan Balu, Mahmud Mossa-Basha
    American Journal of Neuroradiology 2025 46 1
  • Accelerating FLAIR imaging via deep learning reconstruction: potential for evaluating white matter hyperintensities
    Noriko Nishioka, Yukie Shimizu, Yukio Kaneko, Toru Shirai, Atsuro Suzuki, Tomoki Amemiya, Hisaaki Ochi, Yoshitaka Bito, Masahiro Takizawa, Yohei Ikebe, Hiroyuki Kameda, Taisuke Harada, Noriyuki Fujima, Kohsuke Kudo
    Japanese Journal of Radiology 2025 43 2
  • Deep learning for efficient reconstruction of highly accelerated 3D FLAIR MRI in neurological deficits
    Luka C. Liebrand, Dimitrios Karkalousos, Émilie Poirion, Bart J. Emmer, Stefan D. Roosendaal, Henk A. Marquering, Charles B. L. M. Majoie, Julien Savatovsky, Matthan W. A. Caan
    Magnetic Resonance Materials in Physics, Biology and Medicine 2024 38 1
  • Evaluation of Lesion Burden in Pediatric Patients with Multiple Sclerosis by Computer Aided Algorithm and Comparison with Standard Detection Methods
    Gülnihal Deniz, Ahmet Yalçın, Elif Yıldırım, Hüseyin Tan
    Harran Üniversitesi Tıp Fakültesi Dergisi 2024 21 2
  • Mechanisms of Disease Pathogenesis in Multiple Sclerosis
    Mauricio Franco Farez
    2024

More in this TOC Section

Adult Brain

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • NCCT vs. MRI for Brain Atrophy in Acute Stroke
  • Clinical Outcomes After Chiari I Decompression
Show more Adult Brain

Functional

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Predicting Outcomes in Tuberous Sclerosis Epilepsy
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire