Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain
Open Access

MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status

C.G.B. Yogananda, B.R. Shah, S.S. Nalawade, G.K. Murugesan, F.F. Yu, M.C. Pinho, B.C. Wagner, B. Mickey, T.R. Patel, B. Fei, A.J. Madhuranthakam and J.A. Maldjian
American Journal of Neuroradiology May 2021, 42 (5) 845-852; DOI: https://doi.org/10.3174/ajnr.A7029
C.G.B. Yogananda
aFrom the Advanced Neuroscience Imaging Research Lab (C.G.B.Y., B.R.S., S.S.N., G.K.M., F.F.Y., M.C.P., B.C.W., A.J.M., J.A.M.), Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.G.B. Yogananda
B.R. Shah
aFrom the Advanced Neuroscience Imaging Research Lab (C.G.B.Y., B.R.S., S.S.N., G.K.M., F.F.Y., M.C.P., B.C.W., A.J.M., J.A.M.), Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B.R. Shah
S.S. Nalawade
aFrom the Advanced Neuroscience Imaging Research Lab (C.G.B.Y., B.R.S., S.S.N., G.K.M., F.F.Y., M.C.P., B.C.W., A.J.M., J.A.M.), Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.S. Nalawade
G.K. Murugesan
aFrom the Advanced Neuroscience Imaging Research Lab (C.G.B.Y., B.R.S., S.S.N., G.K.M., F.F.Y., M.C.P., B.C.W., A.J.M., J.A.M.), Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G.K. Murugesan
F.F. Yu
aFrom the Advanced Neuroscience Imaging Research Lab (C.G.B.Y., B.R.S., S.S.N., G.K.M., F.F.Y., M.C.P., B.C.W., A.J.M., J.A.M.), Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F.F. Yu
M.C. Pinho
aFrom the Advanced Neuroscience Imaging Research Lab (C.G.B.Y., B.R.S., S.S.N., G.K.M., F.F.Y., M.C.P., B.C.W., A.J.M., J.A.M.), Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.C. Pinho
B.C. Wagner
aFrom the Advanced Neuroscience Imaging Research Lab (C.G.B.Y., B.R.S., S.S.N., G.K.M., F.F.Y., M.C.P., B.C.W., A.J.M., J.A.M.), Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B.C. Wagner
B. Mickey
bDepartment of Neurological Surgery (B.M., T.R.P.), University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Mickey
T.R. Patel
bDepartment of Neurological Surgery (B.M., T.R.P.), University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T.R. Patel
B. Fei
cDepartment of Bioengineering (B.F.), University of Texas at Dallas, Richardson, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Fei
A.J. Madhuranthakam
aFrom the Advanced Neuroscience Imaging Research Lab (C.G.B.Y., B.R.S., S.S.N., G.K.M., F.F.Y., M.C.P., B.C.W., A.J.M., J.A.M.), Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A.J. Madhuranthakam
J.A. Maldjian
aFrom the Advanced Neuroscience Imaging Research Lab (C.G.B.Y., B.R.S., S.S.N., G.K.M., F.F.Y., M.C.P., B.C.W., A.J.M., J.A.M.), Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.A. Maldjian
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Hegi ME,
    2. Diserens AC,
    3. Gorlia T, et al
    . MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005;352:997–1003 doi:10.1056/NEJMoa043331 pmid:15758010
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Stupp R,
    2. Hegi ME,
    3. Mason WP, et al
    . European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009;10:459–66 doi:10.1016/S1470-2045(09)70025-7 pmid:19269895
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Chen R,
    2. Smith-Cohn M,
    3. Cohen AL, et al
    . Glioma subclassifications and their clinical significance. Neurotherapeutics 2017;14:284–97 doi:10.1007/s13311-017-0519-x pmid:28281173
    CrossRefPubMed
  4. 4.↵
    1. Suh CH,
    2. Kim HS,
    3. Jung SC, et al
    . Clinically relevant imaging features for MGMT promoter methylation in multiple glioblastoma studies: a systematic review and meta-analysis. AJNR Am J Neuroradiol 2018;39:1439–45 doi:10.3174/ajnr.A5711 pmid:30002055
    Abstract/FREE Full Text
  5. 5.↵
    1. Drabycz S,
    2. Roldan G,
    3. de Robles P, et al
    . An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. Neuroimage 2010;49:1398–1405 doi:10.1016/j.neuroimage.2009.09.049 pmid:19796694
    CrossRefPubMed
  6. 6.↵
    1. Moon WJ,
    2. Choi JW,
    3. Roh HG, et al
    . Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging. Neuroradiology 2012;54:555–63 doi:10.1007/s00234-011-0947-y pmid:21833736
    CrossRefPubMed
  7. 7.↵
    1. Ahn SS,
    2. Shin NY,
    3. Chang JH, et al
    . Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging. J Neurosurg 2014;121:367–73 doi:10.3171/2014.5.JNS132279 pmid:24949678
    CrossRefPubMed
  8. 8.↵
    1. Kanas VG,
    2. Zacharaki EI,
    3. Thomas GA, et al
    . Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma. Comput Methods Programs Biomed 2017;140:249–57 doi:10.1016/j.cmpb.2016.12.018 pmid:28254081
    CrossRefPubMed
  9. 9.↵
    1. Korfiatis P,
    2. Kline TL,
    3. Coufalova L, et al
    . MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med Phys 2016;43:2835–44 doi:10.1118/1.4948668 pmid:27277032
    CrossRefPubMed
  10. 10.↵
    1. Sasaki T,
    2. Kinoshita M,
    3. Fujita K, et al
    . Radiomics and MGMT promoter methylation for prognostication of newly diagnosed glioblastoma. Sci Rep 2019;9:14435 doi:10.1038/s41598-019-50849-y pmid:31594994
    CrossRefPubMed
  11. 11.↵
    1. Wei J,
    2. Yang G,
    3. Hao X, et al
    . A multi-sequence and habitat-based MRI radiomics signature for preoperative prediction of MGMT promoter methylation in astrocytomas with prognostic implication. Eur Radiol 2019;29:877–88 doi:10.1007/s00330-018-5575-z pmid:30039219
    CrossRefPubMed
  12. 12.↵
    1. Yogananda CG,
    2. Shah BR,
    3. Yu FF, et al
    . A novel fully automated MRI-based deep-learning method for classification of 1p/19q co-deletion status in brain gliomas. Neurooncol Adv 2020;2:vdaa066 doi:10.1093/noajnl/vdaa066 pmid:32705083
    CrossRefPubMed
  13. 13.↵
    1. Yogananda CG,
    2. Shah BR,
    3. Vejdani-Jahromi M, et al
    . A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas. Neuro Oncol 2019;22:402–11 doi:10.1093/neuonc/noz199 pmid:31637430
    CrossRefPubMed
  14. 14.↵
    1. Clark K,
    2. Vendt B,
    3. Smith K, et al
    . The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 2013;26:1045–57 doi:10.1007/s10278-013-9622-7 pmid:23884657
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Puchalski RB,
    2. Shah N,
    3. Miller J, et al
    . An anatomic transcriptional atlas of human glioblastoma. Science 2018;360:660–63 doi:10.1126/science.aaf2666 pmid:29748285
    Abstract/FREE Full Text
  16. 16.↵
    1. Erickson B,
    2. Akkus Z,
    3. Sedlar J, et al
    . Data From LGG-1p19qDeletion. The Cancer Imaging Archive. 2017;76. https://doi.org/10.7937/K9/TCIA.2017.dwehtz9v. Accessed November 30, 2017
  17. 17.↵
    1. Ceccarelli M,
    2. Barthel FP,
    3. Malta TM, et al
    . TCGA Research Network. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 2016;164:550–63 doi:10.1016/j.cell.2015.12.028 pmid:26824661
    CrossRefPubMed
  18. 18.↵
    1. Menze BH,
    2. Jakab A,
    3. Bauer S, et al
    . The multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans Med Imaging 2015;34:1993–2024 doi:10.1109/TMI.2014.2377694 pmid:25494501
    CrossRefPubMed
  19. 19.↵
    1. Bakas S,
    2. Akbari H,
    3. Sotiras A, et al
    . Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data 2017;4:170117 doi:10.1038/sdata.2017.117 pmid:28872634
    CrossRefPubMed
  20. 20.↵
    1. Yogananda CG,
    2. Shah BR,
    3. Vejdani-Jahromi M, et al
    . A novel fully automated MRI-based deep learning method for classification of IDH mutation status in brain gliomas. Neuro Oncol 2020;22:402–11 doi:10.1093/neuonc/noz199 pmid:31637430
    CrossRefPubMed
  21. 21.↵
    1. Avants BB,
    2. Tustison NJ,
    3. Song G, et al
    . A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 2011;54:2033–44 doi:10.1016/j.neuroimage.2010.09.025 pmid:20851191
    CrossRefPubMed
  22. 22.↵
    1. Rohlfing T,
    2. Zahr NM,
    3. Sullivan EV, et al
    . The SRI24 multichannel atlas of normal adult human brain structure. Hum Brain Mapp 2010;31:798–819 doi:10.1002/hbm.20906 pmid:20017133
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Smith SM
    . Fast robust automated brain extraction. Hum Brain Mapp 2002;17:143–55 doi:10.1002/hbm.10062 pmid:12391568
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Smith SM,
    2. Jenkinson M,
    3. Woolrich MW, et al
    . Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004;23(Suppl 1):S208–19 doi:10.1016/j.neuroimage.2004.07.05]1 pmid:15501092
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Woolrich MW,
    2. Jbabdi S,
    3. Patenaude B, et al
    . Bayesian analysis of neuroimaging data in FSL. Neuroimage 2009;45:S173–86 doi:10.1016/j.neuroimage.2008.10.055 pmid:19059349
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Jenkinson M,
    2. Beckmann CF,
    3. Behrens TE, et al
    . FSL. Neuroimage 2012;62:782–90 doi:10.1016/j.neuroimage.2011.09.015 pmid:21979382
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Tustison NJ,
    2. Cook PA,
    3. Klein A, et al
    . Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. Neuroimage 2014;99:166–79 doi:10.1016/j.neuroimage.2014.05.044 pmid:24879923
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Petrick N,
    2. Mori K
    1. Wegmayr VA,
    2. Aitharajus S,
    3. Buhmann J, et al
    . Classification of brain MRI with big data and deep 3D convolutional neural networks. In: Petrick N, Mori K, eds. Medical Imaging 2018: Computer-Aided Diagnosis. SPIE Proceedings 2018;1057501 doi:10.1117/12.2293719
    CrossRef
  29. 29.↵
    1. Feng X,
    2. Yang J,
    3. Lipton ZC, et al
    . Deep larning on MRI affirms the prominence of the hippocampal formation in Alzheimer's disease classification. bioRxiv 2018 https://www.biorxiv.org/content/10.1101/456277v1.full.pdf. Accessed April 8, 2020
  30. 30.↵
    1. Abadi M,
    2. Barham P,
    3. Chen J, et al
    . Tensorflow: a system for large-scale machine learning. 12th (USENIX) symposium on operating systems design and implementation (OSDI 16); 2016:265–283. May 27, 2016. https://arxiv.org/a bs/1605.08695. Accessed April 24, 2018
  31. 31.↵
    1. Chollet F. Keras
    : The python deep learning library. Astrophysics Source Code Library 2018. https://keras.io/. Accessed February 10, 2018
  32. 32.↵
    1. Kingma DP,
    2. Ba JL
    . Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations, San Diego, California. May 7–9, 2015
  33. 33.↵
    1. Korfiatis P,
    2. Kline TL,
    3. Lachance DH, et al
    . Residual deep convolutional neural network predicts MGMT methylation status. J Digit Imaging 2017;30:622–28 doi:10.1007/s10278-017-0009-z pmid:28785873
    CrossRefPubMed
  34. 34.↵
    1. Han L,
    2. Kamdar MR
    . MRI to MGMT: predicting methylation status in glioblastoma patients using convolutional recurrent neural networks. Pac Symp Biocomput 2018;23:331–42 pmid:29218894
    PubMed
  35. 35.↵
    1. Chang P,
    2. Grinband J,
    3. Weinberg BD, et al
    . Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR Am J Neuroradiol 2018;39:1201–07 doi:10.3174/ajnr.A5667 pmid:29748206
    Abstract/FREE Full Text
  36. 36.↵
    1. Jégou S,
    2. Drozdzal M,
    3. Vazquez D, et al
    . The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017:11–19. https://ieeexplore.ieee.org/xpl/conhome/8014302/proceeding. Accessed March 28, 2018
  37. 37.↵
    1. Wang G,
    2. Li W,
    3. Ourselin S, et al
    . Automatic brain tumor segmentation based on cascaded convolutional neural networks with uncertainty estimation. Front Comput Neurosci 2019;13:56 doi:10.3389/fncom.2019.00056 pmid:31456678
    CrossRefPubMed
  38. 38.↵
    1. Everhard S,
    2. Tost J,
    3. El Abdalaoui H, et al
    . Identification of regions correlating MGMT promoter methylation and gene expression in glioblastomas. Neuro Oncol 2009;11:348–56 doi:10.1215/15228517-2009-001 pmid:19224763
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Cankovic M,
    2. Nikiforova MN,
    3. Snuderl M, et al
    . The role of MGMT testing in clinical practice: a report of the association for molecular pathology. J Mol Diagn 2013;15:539–55 doi:10.1016/j.jmoldx.2013.05.011 pmid:23871769
    CrossRefPubMed
  40. 40.↵
    1. Estival A,
    2. Sanz C,
    3. Ramirez JL, et al
    . Pyrosequencing versus methylation-specific PCR for assessment of MGMT methylation in tumor and blood samples of glioblastoma patients. Sci Rep 2019;9:11125 doi:10.1038/s41598-019-47642-2
    CrossRef
  41. 41.↵
    1. Poulin M,
    2. Zhou JY,
    3. Yan L, et al
    . Pyrosequencing methylation analysis. Methods Mol Biol 2018;1856:283–96 doi:10.1007/978-1-4939-8751-1_17 pmid:30178259
    CrossRefPubMed
  42. 42.↵
    1. Bady P,
    2. Sciuscio D,
    3. Diserens AC, et al
    . MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status. Acta Neuropathol 2012;124:547–60 doi:10.1007/s00401-012-1016-2 pmid:22810491
    CrossRefPubMedWeb of Science
  43. 43.↵
    Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008;455:1061–68 doi:10.1038/nature07385 pmid:18772890
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 42 (5)
American Journal of Neuroradiology
Vol. 42, Issue 5
1 May 2021
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
C.G.B. Yogananda, B.R. Shah, S.S. Nalawade, G.K. Murugesan, F.F. Yu, M.C. Pinho, B.C. Wagner, B. Mickey, T.R. Patel, B. Fei, A.J. Madhuranthakam, J.A. Maldjian
MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status
American Journal of Neuroradiology May 2021, 42 (5) 845-852; DOI: 10.3174/ajnr.A7029

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status
C.G.B. Yogananda, B.R. Shah, S.S. Nalawade, G.K. Murugesan, F.F. Yu, M.C. Pinho, B.C. Wagner, B. Mickey, T.R. Patel, B. Fei, A.J. Madhuranthakam, J.A. Maldjian
American Journal of Neuroradiology May 2021, 42 (5) 845-852; DOI: 10.3174/ajnr.A7029
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • Erratum
  • PubMed
  • Google Scholar

Cited By...

  • Imaging Genomics of Glioma Revisited: Analytic Methods to Understand Spatial and Temporal Heterogeneity
  • IDH and 1p19q Diagnosis in Diffuse Glioma from Preoperative MRI Using Artificial Intelligence
  • Crossref (68)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma
    Jiefeng Luo, Mika Pan, Ke Mo, Yingwei Mao, Donghua Zou
    Seminars in Cancer Biology 2023 91
  • Deep learning radiomics of ultrasonography for comprehensively predicting tumor and axillary lymph node status after neoadjuvant chemotherapy in breast cancer patients: A multicenter study
    Jionghui Gu, Tong Tong, Dong Xu, Fang Cheng, Chengyu Fang, Chang He, Jing Wang, Baohua Wang, Xin Yang, Kun Wang, Jie Tian, Tian'an Jiang
    Cancer 2023 129 3
  • Vision transformer-based weakly supervised histopathological image analysis of primary brain tumors
    Zhongxiao Li, Yuwei Cong, Xin Chen, Jiping Qi, Jingxian Sun, Tao Yan, He Yang, Junsi Liu, Enzhou Lu, Lixiang Wang, Jiafeng Li, Hong Hu, Cheng Zhang, Quan Yang, Jiawei Yao, Penglei Yao, Qiuyi Jiang, Wenwu Liu, Jiangning Song, Lawrence Carin, Yupeng Chen, Shiguang Zhao, Xin Gao
    iScience 2023 26 1
  • Fused deep learning paradigm for the prediction of o6-methylguanine-DNA methyltransferase genotype in glioblastoma patients: A neuro-oncological investigation
    Sanjay Saxena, Biswajit Jena, Bibhabasu Mohapatra, Neha Gupta, Manudeep Kalra, Mario Scartozzi, Luca Saba, Jasjit S. Suri
    Computers in Biology and Medicine 2023 153
  • Artificial intelligence-driven biomedical genomics
    Kairui Guo, Mengjia Wu, Zelia Soo, Yue Yang, Yi Zhang, Qian Zhang, Hua Lin, Mark Grosser, Deon Venter, Guangquan Zhang, Jie Lu
    Knowledge-Based Systems 2023 279
  • Validation of MRI-Based Models to Predict MGMT Promoter Methylation in Gliomas: BraTS 2021 Radiogenomics Challenge
    Byung-Hoon Kim, Hyeonhoon Lee, Kyu Sung Choi, Ju Gang Nam, Chul-Kee Park, Sung-Hye Park, Jin Wook Chung, Seung Hong Choi
    Cancers 2022 14 19
  • A Comparison of Three Different Deep Learning-Based Models to Predict the MGMT Promoter Methylation Status in Glioblastoma Using Brain MRI
    Shahriar Faghani, Bardia Khosravi, Mana Moassefi, Gian Marco Conte, Bradley J. Erickson
    Journal of Digital Imaging 2023 36 3
  • Ultrasound radiomics in personalized breast management: Current status and future prospects
    Jionghui Gu, Tian'an Jiang
    Frontiers in Oncology 2022 12
  • Prediction of O-6-methylguanine-DNA methyltransferase and overall survival of the patients suffering from glioblastoma using MRI-based hybrid radiomics signatures in machine and deep learning framework
    Sanjay Saxena, Aaditya Agrawal, Prasad Dash, Biswajit Jena, Narendra N. Khanna, Sudip Paul, Mannudeep M. Kalra, Klaudija Viskovic, Mostafa M. Fouda, Luca Saba, Jasjit S. Suri
    Neural Computing and Applications 2023 35 18
  • Applications of Artificial Intelligence Based on Medical Imaging in Glioma: Current State and Future Challenges
    Jiaona Xu, Yuting Meng, Kefan Qiu, Win Topatana, Shijie Li, Chao Wei, Tianwen Chen, Mingyu Chen, Zhongxiang Ding, Guozhong Niu
    Frontiers in Oncology 2022 12

More in this TOC Section

Adult Brain

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Functional

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Multiparametric MRI in PEDS Pontine Glioma
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire