Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates


Improved Turnaround Times | Median time to first decision: 12 days

Research ArticleAdult Brain

Automated Detection and Segmentation of Brain Metastases in Malignant Melanoma: Evaluation of a Dedicated Deep Learning Model

L. Pennig, R. Shahzad, L. Caldeira, S. Lennartz, F. Thiele, L. Goertz, D. Zopfs, A.-K. Meißner, G. Fürtjes, M. Perkuhn, C. Kabbasch, S. Grau, J. Borggrefe and K.R. Laukamp
American Journal of Neuroradiology April 2021, 42 (4) 655-662; DOI: https://doi.org/10.3174/ajnr.A6982
L. Pennig
aFrom the Institute for Diagnostic and Interventional Radiology (L.P., R.S., L.C., S.L., F.T., D.Z., M.P., C.K., J.B., K.R.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Pennig
R. Shahzad
aFrom the Institute for Diagnostic and Interventional Radiology (L.P., R.S., L.C., S.L., F.T., D.Z., M.P., C.K., J.B., K.R.L.)
cPhilips Innovative Technologies (R.S., F.T., M.P.), Aachen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. Shahzad
L. Caldeira
aFrom the Institute for Diagnostic and Interventional Radiology (L.P., R.S., L.C., S.L., F.T., D.Z., M.P., C.K., J.B., K.R.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Caldeira
S. Lennartz
aFrom the Institute for Diagnostic and Interventional Radiology (L.P., R.S., L.C., S.L., F.T., D.Z., M.P., C.K., J.B., K.R.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Lennartz
F. Thiele
aFrom the Institute for Diagnostic and Interventional Radiology (L.P., R.S., L.C., S.L., F.T., D.Z., M.P., C.K., J.B., K.R.L.)
cPhilips Innovative Technologies (R.S., F.T., M.P.), Aachen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F. Thiele
L. Goertz
bCenter for Neurosurgery (L.G., G.F., S.G.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Goertz
D. Zopfs
aFrom the Institute for Diagnostic and Interventional Radiology (L.P., R.S., L.C., S.L., F.T., D.Z., M.P., C.K., J.B., K.R.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Zopfs
A.-K. Meißner
dDepartment of Stereotaxy and Functional Neurosurgery (A.-K.M., G.F.), Center for Neurosurgery, University Hospital Cologne, Cologne, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A.-K. Meißner
G. Fürtjes
bCenter for Neurosurgery (L.G., G.F., S.G.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
dDepartment of Stereotaxy and Functional Neurosurgery (A.-K.M., G.F.), Center for Neurosurgery, University Hospital Cologne, Cologne, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Fürtjes
M. Perkuhn
aFrom the Institute for Diagnostic and Interventional Radiology (L.P., R.S., L.C., S.L., F.T., D.Z., M.P., C.K., J.B., K.R.L.)
cPhilips Innovative Technologies (R.S., F.T., M.P.), Aachen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Perkuhn
C. Kabbasch
aFrom the Institute for Diagnostic and Interventional Radiology (L.P., R.S., L.C., S.L., F.T., D.Z., M.P., C.K., J.B., K.R.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Kabbasch
S. Grau
bCenter for Neurosurgery (L.G., G.F., S.G.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Grau
J. Borggrefe
aFrom the Institute for Diagnostic and Interventional Radiology (L.P., R.S., L.C., S.L., F.T., D.Z., M.P., C.K., J.B., K.R.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Borggrefe
K.R. Laukamp
aFrom the Institute for Diagnostic and Interventional Radiology (L.P., R.S., L.C., S.L., F.T., D.Z., M.P., C.K., J.B., K.R.L.)
eDepartment of Radiology (K.R.L.), University Hospitals Cleveland Medical Center, Cleveland, Ohio
fDepartment of Radiology (K.R.L.), Case Western Reserve University, Cleveland, Ohio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K.R. Laukamp
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Davies MA,
    2. Liu P,
    3. McIntyre S, et al
    . Prognostic factors for survival in patients with melanoma with brain metastases. Cancer 2011;117:1687–96 doi:10.1002/cncr.25634 pmid:20960525
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Jakob JA,
    2. Bassett RL,
    3. Ng CS, et al
    . NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer 2012;118:4014–23 doi:10.1002/cncr.26724 pmid:22180178
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Goyal S,
    2. Silk AW,
    3. Tian S, et al
    . Clinical management of multiple melanoma brain metastases a systematic review. JAMA Oncol 2015;1:668–76 doi:10.1001/jamaoncol.2015.1206 pmid:26181286
    CrossRefPubMed
  4. 4.↵
    1. Sperduto PW,
    2. Kased N,
    3. Roberge D, et al
    . Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. J Clin Oncol 2012;30:419–25 doi:10.1200/JCO.2011.38.0527 pmid:22203767
    Abstract/FREE Full Text
  5. 5.↵
    1. Michielin O,
    2. van Akkooi A,
    3. Ascierto P, et al
    ; ESMO Guidelines Committee. Cutaneous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2019;30:1884–1901 doi:10.1093/annonc/mdz411 pmid:31566661
    CrossRefPubMed
  6. 6.↵
    1. Schlamann M,
    2. Loquai C,
    3. Goericke S, et al
    . Cerebral MRI in neurological asymptomatic patients with malignant melanoma [in German]. Rofo 2008;180:143–47 doi:10.1055/s-2007-963711 pmid:18098094
    CrossRefPubMed
  7. 7.↵
    1. Garbe C,
    2. Amaral T,
    3. Peris K, et al
    . European consensus-based interdisciplinary guideline for melanoma. Part 1: Diagnostics - Update 2019. Eur J Cancer 2020;126:141–158 doi:10.1016/j.ejca.2019.11.014 pmid:31928887
    CrossRefPubMed
  8. 8.↵
    1. Trotter SC,
    2. Sroa N,
    3. Winkelmann RR, et al
    . A global review of melanoma follow-up guidelines. J Clin Aesthet Dermatol 2013;6(9):18–26 pmid:24062870
    PubMed
  9. 9.↵
    1. Berbaum KS,
    2. Franken EA,
    3. Dorfman DD, et al
    . Satisfaction of search in diagnostic radiology. Invest Radiol 1990;25:133–40 doi:10.1097/00004424-199002000-00006 pmid:2312249
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Brady AP
    . Error and discrepancy in radiology: inevitable or avoidable? Insights Imaging 2017;8:171–82 doi:10.1007/s13244-016-0534-1 pmid:27928712
    CrossRefPubMed
  11. 11.↵
    1. Conson M,
    2. Cella L,
    3. Pacelli R, et al
    . Automated delineation of brain structures in patients undergoing radiotherapy for primary brain tumors: from atlas to dose-volume histograms. Radiother Oncol 2014;112:326–31 doi:10.1016/j.radonc.2014.06.006 pmid:25012642
    CrossRefPubMed
  12. 12.↵
    1. Xue Y,
    2. Chen S,
    3. Qin J, et al
    . Application of deep learning in automated analysis of molecular images in cancer: a survey. Contrast Media Mol Imaging 2017;2017:9512370 doi:10.1155/2017/9512370 pmid:29114182
    CrossRefPubMed
  13. 13.↵
    1. Fountain DM,
    2. Soon WC,
    3. Matys T, et al
    . Volumetric growth rates of meningioma and its correlation with histological diagnosis and clinical outcome: a systematic review. Acta Neurochir (Wien) 2017;159:435–45 doi:10.1007/s00701-016-3071-2 pmid:28101641
    CrossRefPubMed
  14. 14.↵
    1. Chang V,
    2. Narang J,
    3. Schultz L, et al
    . Computer-aided volumetric analysis as a sensitive tool for the management of incidental meningiomas. Acta Neurochir 2012;154:589–97 doi:10.1007/s00701-012-1273-9 pmid:22302235
    CrossRefPubMed
  15. 15.↵
    1. Suh JH
    . Stereotactic radiosurgery for the management of brain metastases. N Engl J Med 2010;362:1119–27 doi:10.1056/NEJMct0806951 pmid:20335588
    CrossRefPubMed
  16. 16.↵
    1. Liu Y,
    2. Stojadinovic S,
    3. Hrycushko B, et al
    . A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery. PLoS One 2017;12:e0185844 doi:10.1371/journal.pone.0185844 pmid:28985229
    CrossRefPubMed
  17. 17.↵
    1. Charron O,
    2. Lallement A,
    3. Jarnet D, et al
    . Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network. Comput Biol Med 2018;95:43–54 doi:10.1016/j.compbiomed.2018.02.004 pmid:29455079
    CrossRefPubMed
  18. 18.↵
    1. Bauknecht HC,
    2. Romano VC,
    3. Rogalla P, et al
    . Intra-and interobserver variability of linear and volumetric measurements of brain metastases using contrast-enhanced magnetic resonance imaging. Invest Radiolol 2010;45:49–56 doi:10.1097/RLI.0b013e3181c02ed5 pmid:19996757
    CrossRefPubMed
  19. 19.↵
    1. Zhou Z,
    2. Sanders JW,
    3. Johnson JM, et al
    . Computer-aided detection of brain metastases in T1-weighted MRI for stereotactic radiosurgery using deep learning single-shot detectors. Radiology 2020;295:407–15 doi:10.1148/radiol.2020191479 pmid:32181729
    CrossRefPubMed
  20. 20.↵
    1. Larson DB,
    2. Chen MC,
    3. Lungren MP, et al
    . Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 2018;287:313–22 doi:10.1148/radiol.2017170236 pmid:29095675
    CrossRefPubMed
  21. 21.↵
    1. Lakhani P,
    2. Sundaram B
    . Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 2017;284:574–82 doi:10.1148/radiol.2017162326 pmid:28436741
    CrossRefPubMed
  22. 22.
    1. Park A,
    2. Chute C,
    3. Rajpurkar P, et al
    . Deep learning-assisted diagnosis of cerebral aneurysms using the HeadXNet model. JAMA Netw open 2019;2:e195600 doi:10.1001/jamanetworkopen.2019.5600 pmid:31173130
    CrossRefPubMed
  23. 23.↵
    1. Laukamp KR,
    2. Thiele F,
    3. Shakirin G, et al
    . Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI. Eur Radiol 2019;29:124–32 doi:10.1007/s00330-018-5595-8 pmid:29943184
    CrossRefPubMed
  24. 24.↵
    1. Perkuhn M,
    2. Stavrinou P,
    3. Thiele F, et al
    . Clinical evaluation of a multiparametric deep learning model for glioblastoma segmentation using heterogeneous magnetic resonance imaging data from clinical routine. Invest Radiol 2018;53:647–54 doi:10.1097/RLI.0000000000000484 pmid:29863600
    CrossRefPubMed
  25. 25.↵
    1. Kickingereder P,
    2. Isensee F,
    3. Tursunova I, et al
    . Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol 2019;20:728–40 doi:10.1016/S1470-2045(19)30098-1 pmid:30952559
    CrossRefPubMed
  26. 26.↵
    1. Kooi T,
    2. Litjens G,
    3. van Ginneken B, et al
    . Large-scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 2017;35:303–12 doi:10.1016/j.media.2016.07.007 pmid:27497072
    CrossRefPubMed
  27. 27.
    1. LeCun Y,
    2. Bengio Y,
    3. Hinton G
    . Deep learning. Nature 2015;521:436–44 doi:10.1038/nature14539 pmid:26017442
    CrossRefPubMed
  28. 28.↵
    1. Akkus Z,
    2. Galimzianova A,
    3. Hoogi A, et al
    . Deep learning for brain MRI segmentation: state of the art and future directions. J Digit Imaging 2017;30:449–59 doi:10.1007/s10278-017-9983-4 pmid:28577131
    CrossRefPubMed
  29. 29.↵
    1. Mazzara GP,
    2. Velthuizen RP,
    3. Pearlman JL, et al
    . Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation. Int J Radiat Oncol Biol Phys 2004;59:300–12 doi:10.1016/j.ijrobp.2004.01.026 pmid:15093927
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Grøvik E,
    2. Yi D,
    3. Iv M, et al
    . Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI. J Magn Reson Imaging 2020;51:175–82 doi:10.1002/jmri.26766 pmid:31050074
    CrossRefPubMed
  31. 31.↵
    1. Noguchi T,
    2. Uchiyama F,
    3. Kawata Y, et al
    . A fundamental study assessing the diagnostic performance of deep learning for a brain metastasis detection task. Magn Reson Med Sci 2020;19:184–94 doi:10.2463/mrms.mp.2019-0063 pmid:31353336
    CrossRefPubMed
  32. 32.↵
    1. Bousabarah K,
    2. Ruge M,
    3. Brand JS, et al
    . Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data. Radiat Oncol 2020;15:87 doi:10.1186/s13014-020-01514-6 pmid:32312276
    CrossRefPubMed
  33. 33.↵
    1. Laukamp KR,
    2. Pennig L,
    3. Thiele F, et al
    . Automated meningioma segmentation in multiparametric MRI: comparable effectiveness of a deep learning model and manual segmentation. Clin Neuroradiol 2020 Feb 14. [Epub ahead of print] doi:10.1007/s00062-020-00884-4 pmid:32060575
    CrossRefPubMed
  34. 34.↵
    1. Kamnitsas K,
    2. Ledig C,
    3. Newcombe VFJ, et al
    . Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 2017;36:61–78 doi:10.1016/j.media.2016.10.004 pmid:27865153
    CrossRefPubMed
  35. 35.↵
    1. Crum WR,
    2. Camara O,
    3. Hill DL
    . Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans Med Imaging 2006;25:1451–61 doi:10.1109/TMI.2006.880587 pmid:17117774
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Schoenmaekers J,
    2. Hofman P,
    3. Bootsma G, et al
    . Screening for brain metastases in patients with stage III non–small-cell lung cancer, magnetic resonance imaging or computed tomography? A prospective study. Eur J Cancer 2019;115:88–96 doi:10.1016/j.ejca.2019.04.017 pmid:31129385
    CrossRefPubMed
  37. 37.↵
    1. Narita Y,
    2. Shibui S
    . Strategy of surgery and radiation therapy for brain metastases. Int J Clin Oncol 2009;14:275–80 doi:10.1007/s10147-009-0917-0 pmid:19705236
    CrossRefPubMed
  38. 38.↵
    1. Bruno MA,
    2. Walker EA,
    3. Abujudeh HH
    . Understanding and confronting our mistakes: the epidemiology of error in radiology and strategies for error reduction. Radiographics 2015;35:1668–76 doi:10.1148/rg.2015150023 pmid:26466178
    CrossRefPubMed
  39. 39.↵
    1. Henson JW,
    2. Ulmer S,
    3. Harris GJ
    . Brain tumor imaging in clinical trials. AJNR Am J Neuroradiol 2008;29:419–24 doi:10.3174/ajnr.A0963 pmid:18272557
    Abstract/FREE Full Text
  40. 40.↵
    1. Lin NU,
    2. Lee EQ,
    3. Aoyama H, et al
    ; Response Assessment in Neuro-Oncology (RANO) group, Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol 2015;16:e270–78 doi:10.1016/S1470-2045(15)70057-4 pmid:26065612
    CrossRefPubMed
  41. 41.↵
    1. Laukamp KR,
    2. Lindemann F,
    3. Weckesser M, et al
    . Multimodal imaging of patients with gliomas confirms 11 C-MET PET as a complementary marker to MRI for noninvasive tumor grading and intraindividual follow-up after therapy. Mol Imaging 2017;16 doi:10.1177/1536012116687651 pmid:28654379
    CrossRefPubMed
  42. 42.↵
    1. Menze BH,
    2. Jakab A,
    3. Bauer S, et al
    . The multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans Med Imaging 2015;34:1993–2024 doi:10.1109/TMI.2014.2377694 pmid:25494501
    CrossRefPubMed
  43. 43.↵
    1. Laukamp KR,
    2. Pennig L,
    3. Thiele F, et al
    . Automated meningioma segmentation in multiparametric MRI. Clin Neuroradiol 2020 Feb 4. [Epub ahead of print] doi:10.1007/s00062-020-00884-4 pmid:32060575
    CrossRefPubMed
  44. 44.↵
    1. Pennig L,
    2. Hoyer UC,
    3. Goertz L, et al
    . Primary central nervous system lymphoma: clinical evaluation of automated segmentation on multiparametric MRI using deep learning. J Magn Reson Imaging 2021;53:259–68 doi:10.1002/jmri.27288 pmid:32662130
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 42 (4)
American Journal of Neuroradiology
Vol. 42, Issue 4
1 Apr 2021
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Automated Detection and Segmentation of Brain Metastases in Malignant Melanoma: Evaluation of a Dedicated Deep Learning Model
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
L. Pennig, R. Shahzad, L. Caldeira, S. Lennartz, F. Thiele, L. Goertz, D. Zopfs, A.-K. Meißner, G. Fürtjes, M. Perkuhn, C. Kabbasch, S. Grau, J. Borggrefe, K.R. Laukamp
Automated Detection and Segmentation of Brain Metastases in Malignant Melanoma: Evaluation of a Dedicated Deep Learning Model
American Journal of Neuroradiology Apr 2021, 42 (4) 655-662; DOI: 10.3174/ajnr.A6982

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Automated Detection and Segmentation of Brain Metastases in Malignant Melanoma: Evaluation of a Dedicated Deep Learning Model
L. Pennig, R. Shahzad, L. Caldeira, S. Lennartz, F. Thiele, L. Goertz, D. Zopfs, A.-K. Meißner, G. Fürtjes, M. Perkuhn, C. Kabbasch, S. Grau, J. Borggrefe, K.R. Laukamp
American Journal of Neuroradiology Apr 2021, 42 (4) 655-662; DOI: 10.3174/ajnr.A6982
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS and METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Development of an optimized machine learning approach for assessing brain metastatic burden in preclinical models
  • Automated segmentation of brain metastases in T1-weighted contrast-enhanced MR images pre and post Stereotactic Radiosurgery
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

Adult Brain

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Functional

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • WM Neuroaxonal Loss in Type 1 Diabetes
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire