Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain

Alterations in the Magnetoencephalography Default Mode Effective Connectivity following Concussion

D.D. Reddy, E.M. Davenport, F.F. Yu, B. Wagner, J.E. Urban, C.T. Whitlow, J.D. Stitzel and J.A. Maldjian
American Journal of Neuroradiology October 2021, 42 (10) 1776-1782; DOI: https://doi.org/10.3174/ajnr.A7232
D.D. Reddy
aFrom the Department of Radiology (D.D.R., E.M.D., F.F.Y., B.W., J.A.M.), University of Texas Southwestern, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D.D. Reddy
E.M. Davenport
aFrom the Department of Radiology (D.D.R., E.M.D., F.F.Y., B.W., J.A.M.), University of Texas Southwestern, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E.M. Davenport
F.F. Yu
aFrom the Department of Radiology (D.D.R., E.M.D., F.F.Y., B.W., J.A.M.), University of Texas Southwestern, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F.F. Yu
B. Wagner
aFrom the Department of Radiology (D.D.R., E.M.D., F.F.Y., B.W., J.A.M.), University of Texas Southwestern, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Wagner
J.E. Urban
bWake Forest School of Medicine (J.E.U. C.T.W., J.D.S.), Winston-Salem, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.E. Urban
C.T. Whitlow
bWake Forest School of Medicine (J.E.U. C.T.W., J.D.S.), Winston-Salem, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.T. Whitlow
J.D. Stitzel
bWake Forest School of Medicine (J.E.U. C.T.W., J.D.S.), Winston-Salem, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.D. Stitzel
J.A. Maldjian
aFrom the Department of Radiology (D.D.R., E.M.D., F.F.Y., B.W., J.A.M.), University of Texas Southwestern, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.A. Maldjian
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Virji-Babul N,
    2. Hilderman CG,
    3. Makan N, et al
    . Changes in functional brain networks following sports-related concussion in adolescents. J Neurotrauma 2014;31:1914–19 doi:10.1089/neu.2014.3450 pmid:24956041
    CrossRefPubMed
  2. 2.↵
    1. McCrea M,
    2. Guskiewicz KM,
    3. Marshall SW, et al
    . Acute effects and recovery time following concussion in collegiate football players: the NCAA Concussion Study. JAMA 2003;290:2556–63 doi:10.1001/jama.290.19.2556 pmid:14625332
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Tormenti M,
    2. Krieger D,
    3. Puccio AM, et al
    . Magnetoencephalographic virtual recording: a novel diagnostic tool for concussion. Neurosurgical Focus 2012;33:E9 1–7 doi:10.3171/2012.10.FOCUS12282 pmid:23199432
    CrossRefPubMed
  4. 4.↵
    1. Huang MX,
    2. Theilmann RJ,
    3. Robb A, et al
    . Integrated imaging approach with MEG and DTI to detect mild traumatic brain injury in military and civilian patients. J Neurotrauma 2009;26:1213–26 doi:10.1089/neu.2008.0672 pmid:19385722
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Zhu DC,
    2. Covassin T,
    3. Nogle S, et al
    . A potential biomarker in sports-related concussion: brain functional connectivity alteration of the default-mode network measured with longitudinal resting-state fMRI over thirty days. J Neurotrauma 2015;32:327–41 doi:10.1089/neu.2014.3413 pmid:25116397
    CrossRefPubMed
  6. 6.↵
    1. Fibel K,
    2. Cardinale N,
    3. Nichols S, et al
    . Evaluating concussion in sport: a case for magnetoencephalography. J Athletic Enhancement 2014;3:4 doi:10.4172/2324-9080.1000155
    CrossRef
  7. 7.↵
    1. Brookes MJ,
    2. Woolrich M,
    3. Luckhoo H, et al
    . Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proc Natl Acad Sci U S A 2011;108:16783–88 doi:10.1073/pnas.1112685108 pmid:21930901
    Abstract/FREE Full Text
  8. 8.↵
    1. Dale AM,
    2. Liu AK,
    3. Fischl BR, et al
    . Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 2000;26:55–67 doi:10.1016/S0896-6273(00)81138-1 pmid:10798392
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Schwartz ES,
    2. Edgar JC,
    3. Gaetz WC, et al
    . Magnetoencephalography. Pediatr Radiol 2010;40:50–58 doi:10.1007/s00247-009-1451-y pmid:19937237
    CrossRefPubMed
  10. 10.↵
    1. Maldjian JA,
    2. Davenport EM,
    3. Whitlow CT
    . Graph theoretical analysis of resting-state MEG data: Identifying interhemispheric connectivity and the default mode. Neuroimage 2014;96:88–94 doi:10.1016/j.neuroimage.2014.03.065 pmid:24699016
    CrossRefPubMed
  11. 11.↵
    1. Lee RR,
    2. Huang M
    . Magnetoencephalography in the Diagnosis of Concussion. In: Concussion. Vol 28. Karger Publishers; 2014:94–111
  12. 12.↵
    1. Dunkley B,
    2. Da Costa L,
    3. Bethune A, et al
    . Low-frequency connectivity is associated with mild traumatic brain injury. Neuroimage Clin 2015;7:611–21 doi:10.1016/j.nicl.2015.02.020 pmid:25844315
    CrossRefPubMed
  13. 13.↵
    1. Dimitriadis SI,
    2. Zouridakis G,
    3. Rezaie R, et al
    . Functional connectivity changes detected with magnetoencephalography after mild traumatic brain injury. Neuroimage Clin 2015;9:519–31 doi:10.1016/j.nicl.2015.09.011 pmid:26640764
    CrossRefPubMed
  14. 14.↵
    1. Dunkley BT,
    2. Urban K,
    3. Da Costa L, et al
    . Default mode network oscillatory coupling is increased following concussion. Front Neurol 2018;9:280 doi:10.3389/fneur.2018.00280 pmid:29755402
    CrossRefPubMed
  15. 15.↵
    1. Tarapore PE,
    2. Findlay AM,
    3. LaHue SC, et al
    . Resting state magnetoencephalography functional connectivity in traumatic brain injury. J Neurosurg 2013;118:1306–16 doi:10.3171/2013.3.JNS12398 pmid:23600939
    CrossRefPubMed
  16. 16.↵
    1. Friston KJ
    . Functional and effective connectivity: a review. Brain Connect 2011;1:13–36 doi:10.1089/brain.2011.0008 pmid:22432952
    CrossRefPubMed
  17. 17.↵
    1. Tana MG,
    2. Sclocco R,
    3. Bianchi AM
    . GMAC: a Matlab toolbox for spectral Granger causality analysis of fMRI data. Comput Biol Med 2012;42:943–56 doi:10.1016/j.compbiomed.2012.07.003 pmid:22925560
    CrossRefPubMed
  18. 18.↵
    1. Friston K,
    2. Moran R,
    3. Seth AK
    . Analysing connectivity with Granger causality and dynamic causal modelling. Curr Opin Neurobiol 2013;23:172–78 doi:10.1016/j.conb.2012.11.010 pmid:23265964
    CrossRefPubMed
  19. 19.↵
    1. Sharp DJ,
    2. Beckmann CF,
    3. Greenwood R, et al
    . Default mode network functional and structural connectivity after traumatic brain injury. Brain 2011;134:2233–47 doi:10.1093/brain/awr175 pmid:21841202
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Raichle ME,
    2. MacLeod AM,
    3. Snyder AZ, et al
    . A default mode of brain function. Proc Natl Acad Sci U S A 2001;98:676–82 doi:10.1073/pnas.98.2.676 pmid:11209064
    Abstract/FREE Full Text
  21. 21.↵
    1. Bharath RD,
    2. Munivenkatappa A,
    3. Gohel S, et al
    . Recovery of resting brain connectivity ensuing mild traumatic brain injury. Front Hum Neurosci 2015;9:513 doi:10.3389/fnhum.2015.00513
    CrossRefPubMed
  22. 22.↵
    1. Urban JE,
    2. Davenport EM,
    3. Golman AJ, et al
    . Head impact exposure in youth football: high school ages 14 to 18 years and cumulative impact analysis. Ann Biomed Eng 2013;41:2474–87 doi:10.1007/s10439-013-0861-z pmid:23864337
    CrossRefPubMed
  23. 23.↵
    1. Ashburner J,
    2. Friston KJ
    . Voxel-based morphometry: the methods. Neuroimage 2000;11:805–21 doi:10.1006/nimg.2000.0582 pmid:10860804
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Tadel F,
    2. Baillet S,
    3. Mosher JC, et al
    . Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci 2011;2011:879716 doi:10.1155/2011/879716 pmid:21584256
    CrossRefPubMed
  25. 25.↵
    1. Hämäläinen MS,
    2. Ilmoniemi RJ
    . Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput 1994;32:35–42 doi:10.1007/BF02512476 pmid:8182960
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Desikan RS,
    2. Ségonne F,
    3. Fischl B, et al
    . An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006;31:968–80 doi:10.1016/j.neuroimage.2006.01.021 pmid:16530430
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Kabbara A,
    2. Falou WE,
    3. Khalil M, et al
    . The dynamic functional core network of the human brain at rest. Sci Rep 2017;7:2936 doi:10.1038/s41598-017-03420-6 pmid:28592794
    CrossRefPubMed
  28. 28.↵
    1. Hillebrand A,
    2. Tewarie P,
    3. Van Dellen E, et al
    . Direction of information flow in large-scale resting-state networks is frequency-dependent. Proc Natl Acad Sci U S A 2016;113:3867–72 doi:10.1073/pnas.1515657113 pmid:27001844
    Abstract/FREE Full Text
  29. 29.↵
    1. Granger CW
    . Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969;37:424–38 doi:10.2307/1912791
    CrossRef
  30. 30.↵
    1. Geweke J
    . Measurement of linear dependence and feedback between multiple time series. J Am Stat Assoc 1982;77:304–13 doi:10.1080/01621459.1982.10477803
    CrossRefWeb of Science
  31. 31.↵
    1. Li L,
    2. Pagnotta MF,
    3. Arakaki X, et al
    . Brain activation profiles in mTBI: Evidence from combined resting-state EEG and MEG activity. Annu Int Conf IEEE Eng Med Biol Soc 2015;2015:6963–66 doi:10.1109/EMBC.2015.7319994 pmid:26737894
    CrossRefPubMed
  32. 32.↵
    1. Mayer AR,
    2. Mannell MV,
    3. Ling J, et al
    . Functional connectivity in mild traumatic brain injury. Hum Brain Mapp 2011;32:1825–35 doi:10.1002/hbm.21151 pmid:21259381
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Hillary FG,
    2. Rajtmajer SM,
    3. Roman CA, et al
    . The rich get richer: brain injury elicits hyperconnectivity in core subnetworks. PLoS One 2014;9:e104021 doi:10.1371/journal.pone.0104021 pmid:25121760
    CrossRefPubMed
  34. 34.↵
    1. Tang CY,
    2. Eaves E,
    3. Dams-O'Connor K, et al
    . Diffuse disconnectivity in traumatic brain injury: a resting state fMRI and DTI study. Transl Neurosci 2012;3:9–14 doi:10.2478/s13380-012-0003-3 pmid:23459252
    CrossRefPubMed
  35. 35.↵
    1. Palacios EM,
    2. Sala-Llonch R,
    3. Junque C, et al
    . Resting-state functional magnetic resonance imaging activity and connectivity and cognitive outcome in traumatic brain injury. JAMA Neurol 2013;70:845–51 doi:10.1001/jamaneurol.2013.38 pmid:23689958
    CrossRefPubMed
  36. 36.↵
    1. Hristopulos D,
    2. Babul A,
    3. Brucar L, et al
    . Disrupted information flow in resting-state in adolescents with sports related concussion. Front Hum Neurosci 2019;13:419 doi:10.3389/fnhum.2019.00419 pmid:31920584
    CrossRefPubMed
  37. 37.↵
    1. de Almeida JR,
    2. Versace A,
    3. Mechelli A, et al
    . Abnormal amygdala-prefrontal effective connectivity to happy faces differentiates bipolar from major depression. Biol Psychiatry 2009;66:451–59 doi:10.1016/j.biopsych.2009.03.024 pmid:19450794
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Liu Z,
    2. Zhang Y,
    3. Bai L, et al
    . Investigation of the effective connectivity of resting state networks in Alzheimer's disease: a functional MRI study combining independent components analysis and multivariate Granger causality analysis. NMR Biomed 2012;25:1311–20 doi:10.1002/nbm.2803 pmid:22505275
    CrossRefPubMed
  39. 39.↵
    1. Wang L,
    2. Zhang J,
    3. Zhang Y, et al
    . Conditional granger causality analysis of effective connectivity during motor imagery and motor execution in stroke patients. BioMed Res Int 2016;2016:3870863 doi:10.1155/2016/3870863 pmid:27200373
    CrossRefPubMed
  40. 40.↵
    1. Eierud C,
    2. Craddock RC,
    3. Fletcher S, et al
    . Neuroimaging after mild traumatic brain injury: review and meta-analysis. Neuroimage Clin 2014;4:283–94 doi:10.1016/j.nicl.2013.12.009 pmid:25061565
    CrossRefPubMed
  41. 41.↵
    1. Hashimoto K,
    2. Abo M
    . Abnormal regional benzodiazepine receptor uptake in the prefrontal cortex in patients with mild traumatic brain injury. J Rehabil Med 2009;41:661–65 doi:10.2340/16501977-0388 pmid:19565161
    CrossRefPubMed
  42. 42.↵
    1. Huang MX,
    2. Nichols S,
    3. Baker DG, et al
    . Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury. Neuroimage Clin 2014;5:109–19 doi:10.1016/j.nicl.2014.06.004 pmid:25009772
    CrossRefPubMed
  43. 43.↵
    1. Zhou Y,
    2. Milham MP,
    3. Lui YW, et al
    . Default-mode network disruption in mild traumatic brain injury. Radiology 2012;265:882–92 doi:10.1148/radiol.12120748 pmid:23175546
    CrossRefPubMed
  44. 44.↵
    1. Gorman LK,
    2. Fu K,
    3. Hovda DA, et al
    . Effects of traumatic brain injury on the cholinergic system in the rat. J Neurotrauma 1996;13:457–63 doi:10.1089/neu.1996.13.457 pmid:8880609
    CrossRefPubMedWeb of Science
  45. 45.↵
    1. Schaul N,
    2. Gloor P,
    3. Ball G, et al
    . The electromicrophysiology of delta waves induced by systemic atropine. Brain Res 1978;143:475–86 doi:10.1016/0006-8993(78)90358-X pmid:647373
    CrossRefPubMedWeb of Science
  46. 46.↵
    1. D'Andola M,
    2. Rebollo B,
    3. Casali AG, et al
    . Bistability, causality, and complexity in cortical networks: an in vitro perturbational study. Cereb Cortex 2018;28:2233–42 doi:10.1093/cercor/bhx122 pmid:28525544
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 42 (10)
American Journal of Neuroradiology
Vol. 42, Issue 10
1 Oct 2021
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Alterations in the Magnetoencephalography Default Mode Effective Connectivity following Concussion
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
D.D. Reddy, E.M. Davenport, F.F. Yu, B. Wagner, J.E. Urban, C.T. Whitlow, J.D. Stitzel, J.A. Maldjian
Alterations in the Magnetoencephalography Default Mode Effective Connectivity following Concussion
American Journal of Neuroradiology Oct 2021, 42 (10) 1776-1782; DOI: 10.3174/ajnr.A7232

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Alterations in the Magnetoencephalography Default Mode Effective Connectivity following Concussion
D.D. Reddy, E.M. Davenport, F.F. Yu, B. Wagner, J.E. Urban, C.T. Whitlow, J.D. Stitzel, J.A. Maldjian
American Journal of Neuroradiology Oct 2021, 42 (10) 1776-1782; DOI: 10.3174/ajnr.A7232
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Reduced Cortical Excitability is Associated with Cognitive Symptoms in Concussed Adolescent Football Players
  • Resting-state causal brain connectivity in youth female athletes suggest sex-related differences following subacute concussion
  • Crossref (1)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Correlating Magnetoencephalography, Diffusion Kurtosis Imaging, Biomechanics, and Neuropsychology in American Youth Football
    Natalie M. Bell, Fang F. Yu, Yin Xi, Amy L. Proskovec, James M. Holcomb, Sahil Chilukuri, Jillian E. Urban, Christopher Vaughan, Jesse C. DeSimone, Ben Wagner, Mark A. Espeland, Alexander K. Powers, Christopher T. Whitlow, Joel D. Stitzel, Joseph A. Maldjian, Elizabeth M. Davenport
    Journal of Neurotrauma 2025

More in this TOC Section

Adult Brain

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Functional

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Multiparametric MRI in PEDS Pontine Glioma
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire