Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticlePediatrics

Assessment of Maturational Changes in White Matter Anisotropy and Volume in Children: A DTI Study

G. Coll, E. de Schlichting, L. Sakka, J.-M. Garcier, H. Peyre and J.-J. Lemaire
American Journal of Neuroradiology September 2020, 41 (9) 1726-1732; DOI: https://doi.org/10.3174/ajnr.A6709
G. Coll
aService de Neurochirurgie (G.C.), Centre Hospitalier Universitaire Clermont-Ferrand, Clermont-Ferrand, France
bCentre National de la Recherche Scientifique (G.C.), SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Coll
E. de Schlichting
cService de Neurochirurgie (E.d.S.), Centre Hospitalier Universitaire Clermont-Ferrand, Clermont-Ferrand, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E. de Schlichting
L. Sakka
dService de Neurochirurgie (L.S.), Centre Hospitalier Universitaire Clermont-Ferrand, Clermont-Ferrand, France
eLaboratoire d'anatomie et d'organogenèse, laboratoire de biophysique sensorielle (L.S.), NeuroDol, faculté de médecine, Université Clermont Auvergne, Clermont-Ferrand, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Sakka
J.-M. Garcier
fService de Radiologie Pédiatrique (J.M.-G.), Centre Hospitalier Universitaire Clermont-Ferrand, Clermont-Ferrand, France
gLaboratoire d'Anatomie et d'Organogenèse, Laboratoire de Biophysique Sensorielle (J.M.G.), NeuroDol, Faculté de Médecine, Université Clermont Auvergne, Clermont-Ferrand, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.-M. Garcier
H. Peyre
hService de Psychiatrie de l'Enfant et de l'Adolescent, Hôpital Robert Debré (H.P.), Assistance Publique–Hôpitaux de Paris, Paris, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H. Peyre
J.-J. Lemaire
iService de Neurochirurgie (J.-J.L.), Centre Hospitalier Universitaire Clermont-Ferrand, Clermont-Ferrand, France
jCentre National de la Recherche Scientifique (J.-J.L.), SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, Clermont-Ferrand, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.-J. Lemaire
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Geng X,
    2. Gouttard S,
    3. Sharma A, et al
    . Quantitative tract-based white matter development from birth to age 2 years. Neuroimage 2012;61:542–57 doi:10.1016/j.neuroimage.2012.03.057 pmid:22510254
    CrossRefPubMed
  2. 2.↵
    1. Dubois J,
    2. Dehaene-Lambertz G,
    3. Kulikova S, et al
    . The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 2014;276:48–71 doi:10.1016/j.neuroscience.2013.12.044 pmid:24378955
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Huttenlocher PR,
    2. Bonnier C
    . Effects of changes in the periphery on development of the corticospinal motor system in the rat. Brain Res Dev Brain Res 1991;60:253–60 doi:10.1016/0165-3806(91)90054-m pmid:1893567
    CrossRefPubMed
  4. 4.↵
    1. Paus T,
    2. Collins DL,
    3. Evans AC, et al
    . Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 2001;54:255–66 doi:10.1016/s0361-9230(00)00434-2 pmid:11287130
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Baumann N,
    2. Pham-Dinh D
    . Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 2001;81:871–927 doi:10.1152/physrev.2001.81.2.871 pmid:11274346
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. van der Knaap MS,
    2. Valk J,
    3. Bakker CJ, et al
    . Myelination as an expression of the functional maturity of the brain. Dev Med Child Neurol 1991;33:849–57 doi:10.1111/j.1469-8749.1991.tb14793.x pmid:1743407
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Hermoye L,
    2. Saint-Martin C,
    3. Cosnard G, et al
    . Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood. Neuroimage 2006;29:493–504 doi:10.1016/j.neuroimage.2005.08.017 pmid:16194615
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Neil JJ,
    2. Shiran SI,
    3. McKinstry RC, et al
    . Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 1998;209:57–66 doi:10.1148/radiology.209.1.9769812 pmid:9769812
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Hüppi PS,
    2. Warfield S,
    3. Kikinis R, et al
    . Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol 1998;43:224–35 doi:10.1002/ana.410430213 pmid:9485064
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Beaulieu C
    . The basis of anisotropic water diffusion in the nervous system: a technical review. NMR Biomed 2002;15:435–55 doi:10.1002/nbm.782 pmid:12489094
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Wimberger DM,
    2. Roberts TP,
    3. Barkovich AJ, et al
    . Identification of “premyelination” by diffusion-weighted MRI. J Comput Assist Tomogr 1995;19:28–33 doi:10.1097/00004728-199501000-00005 pmid:7529780
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Groeschel S,
    2. Vollmer B,
    3. King MD, et al
    . Developmental changes in cerebral grey and white matter volume from infancy to adulthood. Int J Dev Neurosci 2010;28:481–89 doi:10.1016/j.ijdevneu.2010.06.004 pmid:20600789
    CrossRefPubMed
  13. 13.↵
    1. Matsuzawa J,
    2. Matsui M,
    3. Konishi T, et al
    . Age-related volumetric changes of brain gray and white matter in healthy infants and children. Cereb Cortex 2001;11:335–42 doi:10.1093/cercor/11.4.335 pmid:11278196
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Hasan KM,
    2. Iftikhar A,
    3. Kamali A, et al
    . Development and aging of the healthy human brain uncinate fasciculus across the lifespan using diffusion tensor tractography. Brain Res 2009;1276:67–76 doi:10.1016/j.brainres.2009.04.025 pmid:19393229
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Wakana S,
    2. Caprihan A,
    3. Panzenboeck MM, et al
    . Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 2007;36:630–44 doi:10.1016/j.neuroimage.2007.02.049 pmid:17481925
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Malykhin N,
    2. Concha L,
    3. Seres P, et al
    . Diffusion tensor imaging tractography and reliability analysis for limbic and paralimbic white matter tracts. Psychiatry Res 2008;164:132–42 doi:10.1016/j.pscychresns.2007.11.007 pmid:18945599
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Dubois J,
    2. Hertz-Pannier L,
    3. Dehaene-Lambertz G, et al
    . Assessment of the early organization and maturation of infants' cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage 2006;30:1121–32 doi:10.1016/j.neuroimage.2005.11.022 pmid:16413790
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Vassal F,
    2. Schneider F,
    3. Boutet C, et al
    . Combined DTI tractography and functional MRI study of the language connectome in healthy volunteers: extensive mapping of white matter fascicles and cortical activations. PLoS One 2016;11:e0152614 doi:10.1371/journal.pone.0152614 pmid:27029050
    CrossRefPubMed
  19. 19.↵
    1. Mori S,
    2. van Zijl P
    . Fiber tracking: principles and strategies: a technical review. NMR Biomed 2002;15:468–80 doi:10.1002/nbm.781 pmid:12489096
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Lazar M,
    2. Weinstein DM,
    3. Tsuruda JS, et al
    . White matter tractography using diffusion tensor deflection. Hum Brain Mapp 2003;18:306–21 doi:10.1002/hbm.10102 pmid:12632468
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Oishi K,
    2. Zilles K,
    3. Amunts K, et al
    . Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. Neuroimage 2008;43:447–57 doi:10.1016/j.neuroimage.2008.07.009 pmid:18692144
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Lemaire JJ,
    2. Frew AJ,
    3. McArthur D, et al
    . White matter connectivity of human hypothalamus. Brain Res 2011;1371:43–64 doi:10.1016/j.brainres.2010.11.072 pmid:21122799
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Wakana S,
    2. Jiang H,
    3. Nagae-Poetscher LM, et al
    . Fiber tract-based atlas of human white matter anatomy. Radiology 2004;230:77–87 doi:10.1148/radiol.2301021640 pmid:14645885
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Niogi SN,
    2. Mukherjee P,
    3. Ghajar J, et al
    . Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am J Neuroradiol 2008;29:967–73 doi:10.3174/ajnr.A0970 pmid:18272556
    Abstract/FREE Full Text
  25. 25.↵
    1. Catani M,
    2. Thiebaut de Schotten M
    . A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 2008;44:1105–32 doi:10.1016/j.cortex.2008.05.004 pmid:18619589
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Catani M,
    2. Howard RJ,
    3. Pajevic S, et al
    . Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 2002;17:77–94 doi:10.1006/nimg.2002.1136 pmid:12482069
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Thiebaut de Schotten M,
    2. Ffytche DH,
    3. Bizzi A, et al
    . Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. Neuroimage 2011;54:49–59 doi:10.1016/j.neuroimage.2010.07.055 pmid:20682348
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Partridge SC,
    2. Mukherjee P,
    3. Berman JI, et al
    . Tractography-based quantitation of diffusion tensor imaging parameters in white matter tracts of preterm newborns. J Magn Reson Imaging 2005;22:467–74 doi:10.1002/jmri.20410 pmid:16161075
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. van der Knaap MS,
    2. Valk J
    . MR imaging of the various stages of normal myelination during the first year of life. Neuroradiology 1990;31:459–70 doi:10.1007/BF00340123 pmid:2352626
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Gouttard S,
    2. Goodlett CB,
    3. Kubicki M, et al
    . Measures for validation of DTI tractography. Proc SPIE Int Soc Opt Eng 2012;8314:8314 doi:10.1117/12.911546 pmid:24353381
    CrossRefPubMed
  31. 31.↵
    1. Prayer D,
    2. Prayer L
    . Diffusion-weighted magnetic resonance imaging of cerebral white matter development. Eur J Radiol 2003;45:235–43 doi:10.1016/s0720-048x(02)00312-1 pmid:12595108
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Friede RL
    . Control of myelin formation by axon caliber (with a model of the control mechanism). J Comp Neurol 1972;144:233–52 doi:10.1002/cne.901440207 pmid:5029134
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Brody BA,
    2. Kinney HC,
    3. Kloman AS, et al
    . Sequence of central nervous system myelination in human infancy, I: an autopsy study of myelination. J Neuropathol Exp Neurol 1987;46:283–301 doi:10.1097/00005072-198705000-00005 pmid:3559630
    CrossRefPubMed
  34. 34.↵
    1. Kinney HC,
    2. Brody BA,
    3. Kloman AS, et al
    . Sequence of central nervous system myelination in human infancy, II: patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 1988;47:217–34 doi:10.1097/00005072-198805000-00003 pmid:3367155
    CrossRefPubMed
  35. 35.↵
    1. Yakovlev PI
    . Morphological criteria of growth and maturation of the nervous system in man. Res Publ Assoc Res Nerv Ment Dis 1962;39:3–46 pmid:14008721
    PubMed
  36. 36.↵
    1. Guillery RW
    . Is postnatal neocortical maturation hierarchical?. Trends Neurosci 2005;28:512–17 doi:10.1016/j.tins.2005.08.006 pmid:16126285
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Salami M,
    2. Itami C,
    3. Tsumoto T, et al
    . Change of conduction velocity by regional myelination yields constant latency irrespective of distance between thalamus and cortex. Proc Natl Acad Sci U S A 2003;100:6174–79 doi:10.1073/pnas.0937380100 pmid:12719546
    Abstract/FREE Full Text
  38. 38.↵
    1. Lancaster JL,
    2. Andrews T,
    3. Hardies LJ, et al
    . Three-pool model of white matter. J Magn Reson Imaging 2003;17:1–10 doi:10.1002/jmri.10230 pmid:12500269
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 41 (9)
American Journal of Neuroradiology
Vol. 41, Issue 9
1 Sep 2020
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Assessment of Maturational Changes in White Matter Anisotropy and Volume in Children: A DTI Study
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
G. Coll, E. de Schlichting, L. Sakka, J.-M. Garcier, H. Peyre, J.-J. Lemaire
Assessment of Maturational Changes in White Matter Anisotropy and Volume in Children: A DTI Study
American Journal of Neuroradiology Sep 2020, 41 (9) 1726-1732; DOI: 10.3174/ajnr.A6709

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Assessment of Maturational Changes in White Matter Anisotropy and Volume in Children: A DTI Study
G. Coll, E. de Schlichting, L. Sakka, J.-M. Garcier, H. Peyre, J.-J. Lemaire
American Journal of Neuroradiology Sep 2020, 41 (9) 1726-1732; DOI: 10.3174/ajnr.A6709
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATION:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Characterising the association between posterior parietal metabolite levels and cortical macrostructure in a cohort spanning childhood to adulthood
  • Atlas-Based Quantification of DTI Measures in a Typically Developing Pediatric Spinal Cord
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

Pediatrics

  • Early Ultrasonic Monitoring of Brain Growth and Later Neurodevelopmental Outcome in Very Preterm Infants
  • Diagnostic Value of Sylvian Fissure Hyperechogenicity in Fetal SAH
  • Quantitative Diffusion and Spectroscopic Neuroimaging Combined with a Novel Early-Developmental Assessment Improves Models for 1-Year Developmental Outcomes
Show more Pediatrics

Functional

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Predicting Outcomes in Tuberous Sclerosis Epilepsy
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire