Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleAdult Brain
Open Access

Diagnostic Performance of PET and Perfusion-Weighted Imaging in Differentiating Tumor Recurrence or Progression from Radiation Necrosis in Posttreatment Gliomas: A Review of Literature

N. Soni, M. Ora, N. Mohindra, Y. Menda and G. Bathla
American Journal of Neuroradiology September 2020, 41 (9) 1550-1557; DOI: https://doi.org/10.3174/ajnr.A6685
N. Soni
aDepartment of Radiology (N.S., Y.M., G.B.), University of Iowa Hospitals and Clinics, Iowa City, Iowa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Soni
M. Ora
bDepartment of Radiodiagnosis (M.O., N.M.), Sanjay Gandhi Post Graduate Institute of Medical Sciences, Institute of Nuclear Medicine, Lucknow, India
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Ora
N. Mohindra
bDepartment of Radiodiagnosis (M.O., N.M.), Sanjay Gandhi Post Graduate Institute of Medical Sciences, Institute of Nuclear Medicine, Lucknow, India
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Mohindra
Y. Menda
aDepartment of Radiology (N.S., Y.M., G.B.), University of Iowa Hospitals and Clinics, Iowa City, Iowa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Menda
G. Bathla
aDepartment of Radiology (N.S., Y.M., G.B.), University of Iowa Hospitals and Clinics, Iowa City, Iowa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Bathla
  • Article
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Auffinger B,
    2. Thaci B,
    3. Nigam P, et al
    . New therapeutic approaches for malignant glioma: in search of the Rosetta stone. F1000 Med Rep 2012;4:18 doi:10.3410/M4-18 pmid:22991580
    CrossRefPubMed
  2. 2.↵
    1. Roy S,
    2. Lahiri D,
    3. Maji T, et al
    . Recurrent glioblastoma: where we stand. South Asian J Cancer 2015;4:163–73 doi:10.4103/2278-330X.175953 pmid:26981507
    CrossRefPubMed
  3. 3.↵
    1. Verma N,
    2. Cowperthwaite MC,
    3. Burnett MG, et al
    . Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro-oncology 2013;15:515–34 doi:10.1093/neuonc/nos307 pmid:23325863
    CrossRefPubMed
  4. 4.↵
    1. van Dijken BRJ,
    2. van Laar PJ,
    3. Smits M, et al
    . Perfusion MRI in treatment evaluation of glioblastomas: clinical relevance of current and future techniques. J Magn Reson Imaging 2019;49:11–22 doi:10.1002/jmri.26306 pmid:30561164
    CrossRefPubMed
  5. 5.↵
    1. Zikou A,
    2. Sioka C,
    3. Alexiou GA, et al
    . Radiation necrosis, pseudoprogression, pseudoresponse, and tumor recurrence: imaging challenges for the evaluation of treated gliomas. Contrast Media Mol Imaging 2018;2018:6828396 doi:10.1155/2018/6828396 pmid:30627060
    CrossRefPubMed
  6. 6.↵
    1. Abbasi AW,
    2. Westerlaan HE,
    3. Holtman GA, et al
    . Incidence of tumour progression and pseudoprogression in high-grade gliomas: a systematic review and meta-analysis. Clin Neuroradiol 2018;28:401–11 doi:10.1007/s00062-017-0584-x pmid:28466127
    CrossRefPubMed
  7. 7.↵
    1. Bahrami N,
    2. Piccioni D,
    3. Karunamuni R, et al
    . Edge contrast of the FLAIR hyperintense region predicts survival in patients with high-grade gliomas following treatment with bevacizumab. AJNR Am J Neuroradiol 2018;39:1017–24 doi:10.3174/ajnr.A5620 pmid:29622553
    Abstract/FREE Full Text
  8. 8.↵
    1. Verger A,
    2. Arbizu J,
    3. Law I
    . Role of amino-acid PET in high-grade gliomas: limitations and perspectives. Q J Nucl Med Mol Imaging 2018;62:254–66 doi:10.23736/S1824-4785.18.03092-3 pmid:29696948
    CrossRefPubMed
  9. 9.↵
    1. Kreth F,
    2. Muacevic A,
    3. Medele R, et al
    . The risk of haemorrhage after image guided stereotactic biopsy of intra-axial brain tumours: a prospective study. Acta Neurochir (Wien) 2001;143:539–46 doi:10.1007/s007010170058 pmid:11534670
    CrossRefPubMed
  10. 10.↵
    1. Gallego O
    . Nonsurgical treatment of recurrent glioblastoma. Curr Oncol 2015;22:e273–81 doi:10.3747/co.22.2436 pmid:26300678
    CrossRefPubMed
  11. 11.↵
    1. Essig M,
    2. Shiroishi MS,
    3. Nguyen TB, et al
    . Perfusion MRI: the five most frequently asked technical questions. AJR Am J Roentgenol 2013;200:24–34 doi:10.2214/AJR.12.9543 pmid:23255738
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Welker K,
    2. Boxerman J,
    3. Kalnin A, et al
    . ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain. AJNR Am J Neuroradiol 2015;36:E41–51 doi:10.3174/ajnr.A4341 pmid:25907520
    Abstract/FREE Full Text
  13. 13.↵
    1. la Fougère C,
    2. Suchorska B,
    3. Bartenstein P, et al
    . Molecular imaging of gliomas with PET: opportunities and limitations. Neuro Oncol 2011;13:806–19 doi:10.1093/neuonc/nor054 pmid:21757446
    CrossRefPubMed
  14. 14.↵
    1. Barajas RF, Jr..,
    2. Chang JS,
    3. Segal MR, et al
    . Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2009;253:486–96 doi:10.1148/radiol.2532090007 pmid:19789240
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Young RJ,
    2. Gupta A,
    3. Shah AD, et al
    . MRI perfusion in determining pseudoprogression in patients with glioblastoma. Clin Imaging 2013;37:41–49 doi:10.1016/j.clinimag.2012.02.016 pmid:23151413
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Di Costanzo A,
    2. Scarabino T,
    3. Trojsi F, et al
    . Recurrent glioblastoma multiforme versus radiation injury: a multiparametric 3-T MR approach. Radiol Med 2014;119:616–24 doi:10.1007/s11547-013-0371-y pmid:24408041
    CrossRefPubMed
  17. 17.↵
    1. Prager AJ,
    2. Martinez N,
    3. Beal K, et al
    . Diffusion and perfusion MRI to differentiate treatment-related changes including pseudoprogression from recurrent tumors in high-grade gliomas with histopathologic evidence. AJNR Am J Neuroradiol 2015;36:877–85 doi:10.3174/ajnr.A4218 pmid:25593202
    Abstract/FREE Full Text
  18. 18.↵
    1. Wang S,
    2. Martinez-Lage M,
    3. Sakai Y, et al
    . Differentiating tumor progression from pseudoprogression in patients with glioblastomas using diffusion tensor imaging and dynamic susceptibility contrast MRI. AJNR Am J Neuroradiol 2016;37:28–36 doi:10.3174/ajnr.A4474 pmid:26450533
    Abstract/FREE Full Text
  19. 19.↵
    1. Blasel S,
    2. Zagorcic A,
    3. Jurcoane A, et al
    . Perfusion MRI in the evaluation of suspected glioblastoma recurrence. J Neuroimaging 2016;26:116–23 doi:10.1111/jon.12247 pmid:25907688
    CrossRefPubMed
  20. 20.↵
    1. Thomas AA,
    2. Arevalo-Perez J,
    3. Kaley T, et al
    . Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma. J Neurooncol 2015;125:183–90 doi:10.1007/s11060-015-1893-z pmid:26275367
    CrossRefPubMed
  21. 21.↵
    1. Yun TJ,
    2. Park CK,
    3. Kim TM, et al
    . Glioblastoma treated with concurrent radiation therapy and temozolomide chemotherapy: differentiation of true progression from pseudoprogression with quantitative dynamic contrast-enhanced MR imaging. Radiology 2015;274:830–40 doi:10.1148/radiol.14132632 pmid:25333475
    CrossRefPubMed
  22. 22.↵
    1. Nael K,
    2. Bauer AH,
    3. Hormigo A, et al
    . Multiparametric MRI for differentiation of radiation necrosis from recurrent tumor in patients with treated glioblastoma. AJR Am J Roentgenol 2018;210:18–23 doi:10.2214/AJR.17.18003 pmid:28952810
    CrossRefPubMed
  23. 23.↵
    1. Zakhari N,
    2. Taccone MS,
    3. Torres CH, et al
    . Prospective comparative diagnostic accuracy evaluation of dynamic contrast-enhanced (DCE) vs. dynamic susceptibility contrast (DSC) MR perfusion in differentiating tumor recurrence from radiation necrosis in treated high-grade gliomas. J Magn Reson Imaging 2019;50:573–82 doi:10.1002/jmri.26621 pmid:30614146
    CrossRefPubMed
  24. 24.↵
    1. Ye J,
    2. Bhagat SK,
    3. Li H, et al
    . Differentiation between recurrent gliomas and radiation necrosis using arterial spin labeling perfusion imaging. Exp Ther Med 2016;11:2432–36 doi:10.3892/etm.2016.3225 pmid:27284331
    CrossRefPubMed
  25. 25.↵
    1. Seeger A,
    2. Braun C,
    3. Skardelly M, et al
    . Comparison of three different MR perfusion techniques and MR spectroscopy for multiparametric assessment in distinguishing recurrent high-grade gliomas from stable disease. Acad Radiology 2013;20:1557–65 doi:10.1016/j.acra.2013.09.003 pmid:24200483
    CrossRefPubMed
  26. 26.↵
    1. Nyberg E,
    2. Honce J,
    3. Kleinschmidt-DeMasters BK, et al
    . Arterial spin labeling: pathologically proven superiority over conventional MRI for detection of high-grade glioma progression after treatment. Neuroradiol J 2016;29:377–83 doi:10.1177/1971400916665375 pmid:27542895
    CrossRefPubMed
  27. 27.↵
    1. Razek A,
    2. El-Serougy L,
    3. Abdelsalam M, et al
    . Differentiation of residual/recurrent gliomas from postradiation necrosis with arterial spin labeling and diffusion tensor magnetic resonance imaging-derived metrics. Neuroradiology 2018;60:169–77 doi:10.1007/s00234-017-1955-3 pmid:29218370
    CrossRefPubMed
  28. 28.↵
    1. Patel P,
    2. Baradaran H,
    3. Delgado D, et al
    . MR perfusion-weighted imaging in the evaluation of high-grade gliomas after treatment: a systematic review and meta-analysis. Neuro Oncol 2017;19:118–27 doi:10.1093/neuonc/now148 pmid:27502247
    CrossRefPubMed
  29. 29.↵
    1. van Dijken BRJ,
    2. van Laar PJ,
    3. Holtman GA, et al
    . Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis. Eur Radiology 2017;27:4129–44 doi:10.1007/s00330-017-4789-9 pmid:28332014
    CrossRefPubMed
  30. 30.↵
    1. Kim HS,
    2. Goh MJ,
    3. Kim N, et al
    . Which combination of MR imaging modalities is best for predicting recurrent glioblastoma? Study of diagnostic accuracy and reproducibility. Radiology 2014;273:831–43 doi:10.1148/radiol.14132868 pmid:24885857
    CrossRefPubMed
  31. 31.↵
    1. Shin KE,
    2. Ahn KJ,
    3. Choi HS, et al
    . DCE and DSC MR perfusion imaging in the differentiation of recurrent tumour from treatment-related changes in patients with glioma. Clin Radiol 2014;69:e264–72 doi:10.1016/j.crad.2014.01.016 pmid:24594379
    CrossRefPubMed
  32. 32.↵
    1. Takenaka S,
    2. Asano Y,
    3. Shinoda J, et al
    . Comparison of (11)C-methionine, (11)C-choline, and (18)F-fluorodeoxyglucose-PET for distinguishing glioma recurrence from radiation necrosis. Neurol Med Chir(Tokyo) 2014;54:280–89 doi:10.2176/nmc.oa2013-0117 pmid:24305028
    CrossRefPubMed
  33. 33.↵
    1. Karunanithi S,
    2. Sharma P,
    3. Kumar A, et al
    . 18F-FDOPA PET/CT for detection of recurrence in patients with glioma: prospective comparison with 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 2013;40:1025–35 doi:10.1007/s00259-013-2384-0 pmid:23525498
    CrossRefPubMed
  34. 34.↵
    1. Santra A,
    2. Kumar R,
    3. Sharma P, et al
    . F-18 FDG PET-CT in patients with recurrent glioma: comparison with contrast enhanced MRI. Eur J Radiology 2012;81:508–13 doi:10.1016/j.ejrad.2011.01.080 pmid:21353420
    CrossRefPubMed
  35. 35.↵
    1. Tan H,
    2. Chen L,
    3. Guan Y, et al
    . Comparison of MRI, F-18 FDG, and 11C-choline PET/CT for their potentials in differentiating brain tumor recurrence from brain tumor necrosis following radiotherapy. Clin Nucl Med 2011;36:978–81 doi:10.1097/RLU.0b013e31822f68a6 pmid:21975383
    CrossRefPubMed
  36. 36.↵
    1. Kim YH,
    2. Oh SW,
    3. Lim YJ, et al
    . Differentiating radiation necrosis from tumor recurrence in high-grade gliomas: assessing the efficacy of 18F-FDG PET, 11C-methionine PET and perfusion MRI. Clin Neurol Neurosurg 2010;112:758–65 doi:10.1016/j.clineuro.2010.06.005 pmid:20619531
    CrossRefPubMed
  37. 37.↵
    1. Gómez-Río M,
    2. Rodríguez-Fernández A,
    3. Ramos-Font C, et al
    . Diagnostic accuracy of 201Thallium-SPECT and 18F-FDG-PET in the clinical assessment of glioma recurrence. Eur J Nucl Med Mol Imaging 2008;35:966–75 doi:10.1007/s00259-007-0661-5 pmid:18172642
    CrossRefPubMed
  38. 38.↵
    1. Qiao Z,
    2. Zhao X,
    3. Wang K, et al
    . Utility of dynamic susceptibility contrast perfusion-weighted MR imaging and (11)C-methionine PET/CT for differentiation of tumor recurrence from radiation injury in patients with high-grade gliomas. AJNR Am J Neuroradiol 2019;40:253–59 doi:10.3174/ajnr.A5952 pmid:30655259
    Abstract/FREE Full Text
  39. 39.↵
    1. Deuschl C,
    2. Kirchner J,
    3. Poeppel TD, et al
    . 11C-MET PET/MRI for detection of recurrent glioma. Eur J Nucl Med Mol Imaging 2018;45:593–601 doi:10.1007/s00259-017-3916-9 pmid:29282517
    CrossRefPubMed
  40. 40.↵
    1. Minamimoto R,
    2. Saginoya T,
    3. Kondo C, et al
    . Differentiation of brain tumor recurrence from post-radiotherapy necrosis with 11C-methionine PET: visual assessment versus quantitative assessment. PLoS One 2015;10:e0132515 doi:10.1371/journal.pone.0132515 pmid:26167681
    CrossRefPubMed
  41. 41.↵
    1. Okamoto S,
    2. Shiga T,
    3. Hattori N, et al
    . Semiquantitative analysis of C-11 methionine PET may distinguish brain tumor recurrence from radiation necrosis even in small lesions. Ann Nucl Med 2011;25:213–20 doi:10.1007/s12149-010-0450-2 pmid:21188660
    CrossRefPubMed
  42. 42.↵
    1. Terakawa Y,
    2. Tsuyuguchi N,
    3. Iwai Y, et al
    . Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 2008;49:694–99 doi:10.2967/jnumed.107.048082 pmid:18413375
    Abstract/FREE Full Text
  43. 43.↵
    1. Karunanithi S,
    2. Sharma P,
    3. Kumar A, et al
    . Comparative diagnostic accuracy of contrast-enhanced MRI and 18F-FDOPA PET-CT in recurrent glioma. Eur Radiol 2013;23:2628–35 doi:10.1007/s00330-013-2838-6 pmid:23624623
    CrossRefPubMed
  44. 44.↵
    1. Rossi Espagnet MC,
    2. Romano A,
    3. Mancuso V, et al
    . Multiparametric evaluation of low grade gliomas at follow-up: comparison between diffusion and perfusion MR with (18)F-FDOPA PET. Br J Radiol 2016;89:20160476 doi:10.1259/bjr.20160476 pmid:27505026
    CrossRefPubMed
  45. 45.↵
    1. Herrmann K,
    2. Czernin J,
    3. Cloughesy T, et al
    . Comparison of visual and semiquantitative analysis of 18F-FDOPA-PET/CT for recurrence detection in glioblastoma patients. Neuro-Oncology 2014;16:603–09 doi:10.1093/neuonc/not166 pmid:24305722
    CrossRefPubMed
  46. 46.↵
    1. Rachinger W,
    2. Goetz C,
    3. Pöpperl G, et al
    . Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 2005;57:505–11; discussion 505-11 doi:10.1227/01.NEU.0000171642.49553.B0 pmid:16145529
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Pöpperl G,
    2. Götz C,
    3. Rachinger W, et al
    . Value of O-(2-[18F]fluoroethyl)- L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 2004;31:1464–70 doi:10.1007/s00259-004-1590-1 pmid:15248032
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. Galldiks N,
    2. Stoffels G,
    3. Filss C, et al
    . The use of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro-Oncology 2015;17:1293–1300 doi:10.1093/neuonc/nov088 pmid:26008606
    CrossRefPubMed
  49. 49.↵
    1. Grosu A-L,
    2. Astner ST,
    3. Riedel E, et al
    . An interindividual comparison of O-(2-[18F]fluoroethyl)-L-tyrosine (FET)- and L-[methyl-11C]methionine (MET)-PET in patients with brain gliomas and metastases. Int J Radiat Oncol Biol Phys 2011;81:1049–58 doi:10.1016/j.ijrobp.2010.07.002 pmid:21570201
    CrossRefPubMed
  50. 50.↵
    1. Jeong SY,
    2. Lee TH,
    3. Rhee CH, et al
    . 3′-Deoxy-3′-[18F]fluorothymidine and O-(2-[18F]fluoroethyl)-L-tyrosine PET in patients with suspicious recurrence of glioma after multimodal treatment: initial results of a retrospective comparative study. Nucl Med Mol Imaging 2010;44:45–54 doi:10.1007/s13139-009-0007-2 pmid:24899937
    CrossRefPubMed
  51. 51.↵
    1. Jena A,
    2. Taneja S,
    3. Gambhir A, et al
    . Glioma recurrence versus radiation necrosis: single-session multiparametric approach using simultaneous O-(2-18F-fluoroethyl)-L-tyrosine PET/MRI. Clin Nucl Med 2016;41:e228–36 doi:10.1097/RLU.0000000000001152 pmid:26859208
    CrossRefPubMed
  52. 52.↵
    1. Li Z,
    2. Yu Y,
    3. Zhang H, et al
    . A meta-analysis comparing 18F-FLT PET with 18F-FDG PET for assessment of brain tumor recurrence. Nucl Med Commun 2015;36:695–701 doi:10.1097/MNM.0000000000000302 pmid:25768337
    CrossRefPubMed
  53. 53.↵
    1. Patronas N,
    2. Di Chiro G,
    3. Brooks R, et al
    . Work in progress: [18F] fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiology 1982;144:885–89 doi:10.1148/radiology.144.4.6981123 pmid:6981123
    CrossRefPubMedWeb of Science
  54. 54.↵
    1. Ozsunar Y,
    2. Mullins ME,
    3. Kwong K, et al
    . Glioma recurrence versus radiation necrosis? A pilot comparison of arterial spin-labeled, dynamic susceptibility contrast enhanced MRI, and FDG-PET imaging. Acad Radiol 2010;17:282–90 doi:10.1016/j.acra.2009.10.024 pmid:20060750
    CrossRefPubMed
  55. 55.↵
    1. Jena A,
    2. Taneja S,
    3. Jha A, et al
    . Multiparametric evaluation in differentiating glioma recurrence from treatment-induced necrosis using simultaneous (18)F-FDG-PET/MRI: a single-institution retrospective study. AJNR Am J Neuroradiol 2017;38:899–907 doi:10.3174/ajnr.A5124 pmid:28341716
    Abstract/FREE Full Text
  56. 56.↵
    1. Nihashi T,
    2. Dahabreh IJ,
    3. Terasawa T
    . Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. AJNR Am J Neuroradiol 2013;34:944–950 doi:10.3174/ajnr.A3324 pmid:23124638
    Abstract/FREE Full Text
  57. 57.↵
    1. Yu J,
    2. Zheng J,
    3. Xu W, et al
    . Accuracy of (18)F-FDOPA positron emission tomography and (18)F-FET positron emission tomography for differentiating radiation necrosis from brain tumor recurrence. World Neurosurg 2018;114:e1211–24 doi:10.1016/j.wneu.2018.03.179 pmid:29625311
    CrossRefPubMed
  58. 58.↵
    1. Furuse M,
    2. Nonoguchi N,
    3. Yamada K, et al
    . Radiological diagnosis of brain radiation necrosis after cranial irradiation for brain tumor: a systematic review. Radiat Oncol 2019;14:28 doi:10.1186/s13014-019-1228-x pmid:30728041
    CrossRefPubMed
  59. 59.↵
    1. Herholz K
    . Brain tumors: an update on clinical PET research in gliomas. Semin Nucl Med 2017;47:5–17 doi:10.1053/j.semnuclmed.2016.09.004 pmid:27987557
    CrossRefPubMed
  60. 60.↵
    1. Ullrich R,
    2. Backes H,
    3. Li H, et al
    . Glioma proliferation as assessed by 3'-fluoro-3'-deoxy-L-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin Cancer Res 2008;14:2049–55 doi:10.1158/1078-0432.CCR-07-1553 pmid:18381944
    Abstract/FREE Full Text
  61. 61.↵
    1. Peck M,
    2. Pollack HA,
    3. Friesen A, et al
    . Applications of PET imaging with the proliferation marker [18F]-FLT. Q J Nucl Med Mol Imaging 2015;59:95–104 pmid:4415691
    PubMed
  62. 62.↵
    1. Zeisel SH
    . Dietary choline: biochemistry, physiology, and pharmacology. Annu Rev Nutr 1981;1:95–121 doi:10.1146/annurev.nu.01.070181.000523 pmid:6764726
    CrossRefPubMedWeb of Science
  63. 63.↵
    1. Gao L,
    2. Xu W,
    3. Li T, et al
    . Accuracy of 11C-choline positron emission tomography in differentiating glioma recurrence from radiation necrosis: a systematic review and meta-analysis. Medicine (Baltimore) 2018;97:e11556 doi:10.1097/MD.0000000000011556 pmid:30024551
    CrossRefPubMed
  64. 64.↵
    1. Pyka T,
    2. Gempt J,
    3. Ringel F, et al
    . Prediction of glioma recurrence using dynamic 18F-fluoroethyltyrosine PET. AJNR Am J Neuroradiol 2014;35:1924–29 doi:10.3174/ajnr.A3980 pmid:24924547
    Abstract/FREE Full Text
  65. 65.↵
    1. Zhang Q,
    2. Gao X,
    3. Wei G, et al
    . Prognostic value of MTV, SUVmax and the T/N ratio of PET/CT in patients with glioma: a systematic review and meta-analysis. J Cancer 2019;10:1707–16 doi:10.7150/jca.28605 pmid:31205526
    CrossRefPubMed
  66. 66.↵
    1. Fleischmann DF,
    2. Unterrainer M,
    3. Corradini S, et al
    . Report of first recurrent glioma patients examined with PET-MRI prior to re-irradiation. PLoS One 2019;14:e0216111 doi:10.1371/journal.pone.0216111 pmid:31339892
    CrossRefPubMed
  67. 67.↵
    1. Prat R,
    2. Galeano I,
    3. Lucas A, et al
    . Relative value of magnetic resonance spectroscopy, magnetic resonance perfusion, and 2-(18F) fluoro-2-deoxy-D-glucose positron emission tomography for detection of recurrence or grade increase in gliomas. J Clin Neurosci 2010;17:50–53 doi:10.1016/j.jocn.2009.02.035 pmid:19959364
    CrossRefPubMed
  68. 68.↵
    1. Hatzoglou V,
    2. Yang TJ,
    3. Omuro A, et al
    . A prospective trial of dynamic contrast-enhanced MRI perfusion and fluorine-18 FDG PET-CT in differentiating brain tumor progression from radiation injury after cranial irradiation. Neuro Oncol 2016;18:873–80 doi:10.1093/neuonc/nov301 pmid:26688076
    CrossRefPubMed
  69. 69.↵
    1. Hojjati M,
    2. Badve C,
    3. Garg V, et al
    . Role of FDG-PET/MRI, FDG-PET/CT, and dynamic susceptibility contrast perfusion MRI in differentiating radiation necrosis from tumor recurrence in glioblastomas. J Neuroimaging 2018;28:118–25 doi:10.1111/jon.12460 pmid:28718993
    CrossRefPubMed
  70. 70.↵
    1. Seligman L,
    2. Kovanlikaya I,
    3. Pisapia DJ, et al
    . Integrated PET-MRI for glioma surveillance: perfusion-metabolism discordance rate and association with molecular profiling. AJR Am J Roentgenol 2019;212:883–91 doi:10.2214/AJR.18.20531 pmid:30779663
    CrossRefPubMed
  71. 71.↵
    1. Sogani SK,
    2. Jena A,
    3. Taneja S, et al
    . Potential for differentiation of glioma recurrence from radionecrosis using integrated (18)F-fluoroethyl-L-tyrosine (FET) positron emission tomography/magnetic resonance imaging: a prospective evaluation. Neurol India 2017;65:293–301 doi:10.4103/neuroindia.NI_101_16 pmid:28290392
    CrossRefPubMed
  72. 72.↵
    1. Pyka T,
    2. Hiob D,
    3. Preibisch C, et al
    . Diagnosis of glioma recurrence using multiparametric dynamic 18F-fluoroethyl-tyrosine PET-MRI. Eur J Radiol 2018;103:32–37 doi:10.1016/j.ejrad.2018.04.003 pmid:29803382
    CrossRefPubMed
  73. 73.↵
    1. Verger A,
    2. Filss CP,
    3. Lohmann P, et al
    . Comparison of O-(2-(18)F-Fluoroethyl)-L-tyrosine positron emission tomography and perfusion-weighted magnetic resonance imaging in the diagnosis of patients with progressive and recurrent glioma: a hybrid positron emission tomography/magnetic resonance study. World Neurosurg 2018;113:e727–37 doi:10.1016/j.wneu.2018.02.139 pmid:29510293
    CrossRefPubMed
  74. 74.↵
    1. D'Souza MM,
    2. Sharma R,
    3. Jaimini A, et al
    . 11C-MET PET/CT and advanced MRI in the evaluation of tumor recurrence in high-grade gliomas. Clin Nucl Med 2014;39:791–98 doi:10.1097/RLU.0000000000000532 pmid:25036022
    CrossRefPubMed
  75. 75.↵
    1. Cicone F,
    2. Filss CP,
    3. Minniti G, et al
    . Volumetric assessment of recurrent or progressive gliomas: comparison between F-DOPA PET and perfusion-weighted MRI. Eur J Nucl Med Mol Imaging 2015;42:905–15 doi:10.1007/s00259-015-3018-5 pmid:25750084
    CrossRefPubMed
  76. 76.↵
    1. Yang Y,
    2. He MZ,
    3. Li T, et al
    . MRI combined with PET-CT of different tracers to improve the accuracy of glioma diagnosis: a systematic review and meta-analysis. Neurosurg Rev 2019;42:185–95 doi:10.1007/s10143-017-0906-0 pmid:28918564
    CrossRefPubMed
  77. 77.↵
    1. Lundemann M,
    2. Munck Af Rosenschold P,
    3. Muhic A, et al
    . Feasibility of multi-parametric PET and MRI for prediction of tumour recurrence in patients with glioblastoma. Eur J Nucl Med Mol Imaging 2019;46:603–13 doi:10.1007/s00259-018-4180-3 pmid:30276440
    CrossRefPubMed
  78. 78.↵
    1. Ladefoged CN,
    2. Andersen FL,
    3. Kjaer A, et al
    . RESOLUTE PET/MRI attenuation correction for O-(2-(18)F-fluoroethyl)-L-tyrosine (FET) in brain tumor patients with metal implants. Front Neurosci 2017;11:453 doi:10.3389/fnins.2017.00453 pmid:28848379
    CrossRefPubMed
  79. 79.↵
    1. Marner L,
    2. Henriksen OM,
    3. Lundemann M, et al
    . Clinical PET/MRI in neurooncology: opportunities and challenges from a single-institution perspective. Clin Transl Imaging 2017;5:135–49 doi:10.1007/s40336-016-0213-8 pmid:28936429
    CrossRefPubMed
  80. 80.↵
    1. Jung JH,
    2. Ahn BC
    . Current radiopharmaceuticals for positron emission tomography of brain tumors. Brain Tumor Res Treat 2018;6:47–53 doi:10.14791/btrt.2018.6.e13 pmid:30381916
    CrossRefPubMed
  81. 81.↵
    1. Bailly C,
    2. Vidal A,
    3. Bonnemaire C, et al
    . Potential for nuclear medicine therapy for glioblastoma treatment. Front Pharmacol 2019;10:772–72 doi:10.3389/fphar.2019.00772 pmid:31354487
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 41 (9)
American Journal of Neuroradiology
Vol. 41, Issue 9
1 Sep 2020
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Diagnostic Performance of PET and Perfusion-Weighted Imaging in Differentiating Tumor Recurrence or Progression from Radiation Necrosis in Posttreatment Gliomas: A Review of Literature
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
N. Soni, M. Ora, N. Mohindra, Y. Menda, G. Bathla
Diagnostic Performance of PET and Perfusion-Weighted Imaging in Differentiating Tumor Recurrence or Progression from Radiation Necrosis in Posttreatment Gliomas: A Review of Literature
American Journal of Neuroradiology Sep 2020, 41 (9) 1550-1557; DOI: 10.3174/ajnr.A6685

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Diagnostic Performance of PET and Perfusion-Weighted Imaging in Differentiating Tumor Recurrence or Progression from Radiation Necrosis in Posttreatment Gliomas: A Review of Literature
N. Soni, M. Ora, N. Mohindra, Y. Menda, G. Bathla
American Journal of Neuroradiology Sep 2020, 41 (9) 1550-1557; DOI: 10.3174/ajnr.A6685
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • CONCLUSIONS
    • Footnotes
    • References
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Amino Acid Tracer PET MRI in Glioma Management: What a Neuroradiologist Needs to Know
  • Crossref (12)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Conventional and Advanced Imaging Techniques in Post-treatment Glioma Imaging
    Anna Y. Li, Michael Iv
    Frontiers in Radiology 2022 2
  • Combined amino acid PET-MRI for identifying recurrence in post-treatment gliomas: together we grow
    Shumyla Jabeen, Arpana Arbind, Dinesh Kumar, Pardeep Kumar Singh, Jitender Saini, Nishanth Sadashiva, Uday Krishna, Arivazhagan Arimappamagan, Vani Santosh, Chandana Nagaraj
    European Journal of Hybrid Imaging 2021 5 1
  • Differentiating radiation necrosis from tumor recurrence: a systematic review and diagnostic meta-analysis comparing imaging modalities
    Emily J. Smith, Anant Naik, Annabelle Shaffer, Mahima Goel, David T. Krist, Edward Liang, Charuta G. Furey, William K. Miller, Michael T. Lawton, Daniel H. Barnett, Blake Weis, Ahmed Rizk, Ron S. Smith, Wael Hassaneen
    Journal of Neuro-Oncology 2023 162 1
  • Updated Response Assessment in Neuro-Oncology (RANO) for Gliomas
    Gilbert Youssef, Patrick Y. Wen
    Current Neurology and Neuroscience Reports 2024 24 2
  • Amino Acid Tracer PET MRI in Glioma Management: What a Neuroradiologist Needs to Know
    N. Soni, M. Ora, A. Jena, P. Rana, R. Mangla, S. Ellika, J. Almast, S. Puri, S.P. Meyers
    American Journal of Neuroradiology 2023 44 3
  • Identification of single-dose, dual-echo based CBV threshold for fractional tumor burden mapping in recurrent glioblastoma
    Aliya Anil, Ashley M. Stokes, Renee Chao, Leland S. Hu, Lea Alhilali, John P. Karis, Laura C. Bell, C. Chad Quarles
    Frontiers in Oncology 2023 13
  • MRI Treatment Response Assessment Maps (TRAMs) for differentiating recurrent glioblastoma from radiation necrosis
    Sebastian Johannes Müller, Eya Khadhraoui, Oliver Ganslandt, Hans Henkes, Georg Alexander Gihr
    Journal of Neuro-Oncology 2024 166 3
  • An effective MRI perfusion threshold based workflow to triage additional 18F-FET PET in posttreatment high grade glioma
    Krishna Ranjith Kadali, Nathalie Nierobisch, Fabienne Maibach, Philip Heesen, Paula Alcaide-Leon, Martin Hüllner, Michael Weller, Zsolt Kulcsar, Nicolin Hainc
    Scientific Reports 2025 15 1
  • Low rCBV values in glioblastoma tumor progression under chemoradiotherapy
    A. Hilario, E. Salvador, A. Cardenas, J. Romero, C. Lechuga, Z. Chen, A. Martinez de Aragon, A. Perez-Nuñez, A. Hernandez-Lain, J. Sepulveda, A. Lagares, O. Toldos, V. Rodriguez-Gonzalez, A. Ramos
    Neuroradiology 2024 66 3
  • Radiomics for differentiating radiation-induced brain injury from recurrence in gliomas: systematic review, meta-analysis, and methodological quality evaluation using METRICS and RQS
    Burak Kocak, Ismail Mese, Ece Ates Kus
    European Radiology 2025 35 8

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire