Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain

PACS Integration of Semiautomated Imaging Software Improves Day-to-Day MS Disease Activity Detection

A. Dahan, R. Pereira, C.B. Malpas, T. Kalincik and F. Gaillard
American Journal of Neuroradiology October 2019, 40 (10) 1624-1629; DOI: https://doi.org/10.3174/ajnr.A6195
A. Dahan
aFrom the Department of Radiology (A.D.), Austin Hospital, Heidelberg, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Dahan
R. Pereira
bDepartments of Radiology (R.P., F.G.)
dDepartment of Radiology (R.P.), University of Queensland, Brisbane, Queensland, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. Pereira
C.B. Malpas
cNeurology (T.K., C.M.), Royal Melbourne Hospital, Parkville, Victoria, Australia
eClinical Outcomes Research Unit (CORe) (C.M., T.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.B. Malpas
T. Kalincik
cNeurology (T.K., C.M.), Royal Melbourne Hospital, Parkville, Victoria, Australia
eClinical Outcomes Research Unit (CORe) (C.M., T.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Kalincik
F. Gaillard
bDepartments of Radiology (R.P., F.G.)
fDepartments of Medicine and Radiology (F.G.), University of Melbourne, Melbourne, Australia.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F. Gaillard
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Ramagopalan SV,
    2. Sadovnick AD
    . Epidemiology of multiple sclerosis. Neurol Clin 2011;40:207–17 doi:10.1016/j.ncl.2010.12.010 pmid:21439437
    CrossRefPubMed
  2. 2.↵
    1. Degenhardt A,
    2. Ramagopalan SV,
    3. Scalfari A, et al
    . Clinical prognostic factors in multiple sclerosis: a natural history review. Nat Rev Neurol 2009;5:672–82 doi:10.1038/nrneurol.2009.178 pmid:19953117
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Weiner HL
    . The challenge of multiple sclerosis: how do we cure a chronic heterogeneous disease? Ann Neurol 2009;65:239–48 doi:10.1002/ana.21640 pmid:19334069
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Havrdova E,
    2. Galetta S,
    3. Stefoski D, et al
    . Freedom from disease activity in multiple sclerosis. Neurology 2010;74(Suppl 3):S3–7 doi:10.1212/WNL.0b013e3181dbb51c pmid:20421571
    CrossRefPubMed
  5. 5.↵
    1. Fisniku LK,
    2. Brex PA,
    3. Altmann DR, et al
    . Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain 2008;131:808–17 doi:10.1093/brain/awm329 pmid:18234696
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Bar-Zohar D,
    2. Agosta F,
    3. Goldstaub D, et al
    . Magnetic resonance imaging metrics and their correlation with clinical outcomes in multiple sclerosis: a review of the literature and future perspectives. Mult Scler 2008;14:719–27 doi:10.1177/1352458507088102 pmid:18424478
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Abraham AG,
    2. Duncan DD,
    3. Gange SJ, et al
    . Computer-aided assessment of diagnostic images for epidemiological research. BMC Med Res Methodol 2009;9:74 doi:10.1186/1471-2288-9-74 pmid:19906311
    CrossRefPubMed
  8. 8.↵
    1. van Heerden J,
    2. Rawlinson D,
    3. Zhang A, et al
    . Improving multiple sclerosis plaque detection using a semiautomated assistive approach. AJNR Am J Neuroradiol 2015;36:1465–71 doi:10.3174/ajnr.A4375 pmid:26089318
    Abstract/FREE Full Text
  9. 9.↵
    1. Wang W,
    2. van Heerden J,
    3. Tacey MA, et al
    . Neuroradiologists compared with non-neuroradiologists in the detection of new multiple sclerosis plaques. AJNR Am J Neuroradiol 2017;38:1323–27 doi:10.3174/ajnr.A5185 pmid:28473341
    Abstract/FREE Full Text
  10. 10.↵
    1. Filippi M,
    2. Grossman RI
    . MRI techniques to monitor MS evolution: the present and the future. Neurology 2002;58:1147–53 doi:10.1212/wnl.58.8.1147 pmid:11971079
    Abstract/FREE Full Text
  11. 11.↵
    1. Goodin DS
    . Magnetic resonance imaging as a surrogate outcome measure of disability in multiple sclerosis: have we been overly harsh in our assessment? Ann Neurol 2006;59:597–605 doi:10.1002/ana.20832 pmid:16566022
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Bilello M,
    2. Arkuszewski M,
    3. Nasrallah I, et al
    . Multiple sclerosis lesions in the brain: computer-assisted assessment of lesion load dynamics on 3D FLAIR MR images. Neuroradiol J 2012;25:17–21 doi:10.1177/197140091202500102 pmid:24028871
    CrossRefPubMed
  13. 13.↵
    1. Moraal B,
    2. Meier DS,
    3. Poppe PA, et al
    . Subtraction MR images in a multiple sclerosis multicenter clinical trial setting. Radiology 2009;250:506–14 doi:10.1148/radiol.2501080480 pmid:19037018
    CrossRefPubMed
  14. 14.↵
    1. Dahan A,
    2. Wang W,
    3. Gaillard F
    . Computer-aided detection can bridge the skill gap in multiple sclerosis monitoring. J Am Coll Radiol 2018;15(1 Pt A):93–96 doi:10.1016/j.jacr.2017.06.030 pmid:28764954
    CrossRefPubMed
  15. 15.↵
    1. Polman CH,
    2. Reingold SC,
    3. Banwell B, et al
    . Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011;69:29–302 doi:10.1002/ana.22366 pmid:21387374
    CrossRefPubMed
  16. 16.↵
    The R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2014
  17. 17.↵
    1. Jain S,
    2. Sima DM,
    3. Ribbens A, et al
    . Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images. Neuroimage Clin 2015;8:367–75 doi:10.1016/j.nicl.2015.05.003 pmid:26106562
    CrossRefPubMed
  18. 18.↵
    1. Schmidt P,
    2. Gaser C,
    3. Arsic M, et al
    . An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. Neuroimage 2012;59:3774–83 doi:10.1016/j.neuroimage.2011.11.032 pmid:22119648
    CrossRefPubMed
  19. 19.↵
    1. Galletto Pregliasco AG,
    2. Collin A,
    3. Guéguen A, et al
    . Improved detection of new MS lesions during follow-up using an automated MR coregistration-fusion method. AJNR Am J Neuroradiol 2018;39:1226–32 doi:10.3174/ajnr.A5690 pmid:29880479
    Abstract/FREE Full Text
  20. 20.↵
    1. Mortazavi D,
    2. Kouzani AZ,
    3. Soltanian-Zadeh H
    . Segmentation of multiple sclerosis lesions in MR images: a review. Neuroradiology 2012;54:299–320 doi:10.1007/s00234-011-0886-7 pmid:21584674
    CrossRefPubMed
  21. 21.↵
    1. Caramanos Z,
    2. Francis S,
    3. Narayanan S, et al
    . Large, nonplateauing relationship between clinical disability and cerebral white matter lesion load in patients with multiple sclerosis. Arch Neurol 2012;69:89–95 doi:10.1001/archneurol.2011.765 pmid:22232348
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Sormani MP,
    2. Rovaris M,
    3. Comi G, et al
    . A reassessment of the plateauing relationship between T2 lesion load and disability in MS. Neurology 2009;73:1538–42 doi:10.1212/WNL.0b013e3181c06679 pmid:19794123
    Abstract/FREE Full Text
  23. 23.↵
    1. Traboulsee A,
    2. Simon J,
    3. Stone L, et al
    . Revised recommendations of the consortium of MS centers task force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis. AJNR Am J Neuroradiol 2016;37:394–401 doi:10.3174/ajnr.A4539 pmid:26564433
    Abstract/FREE Full Text
  24. 24.↵
    1. Kanda T,
    2. Nakai Y,
    3. Hagiwara A, et al
    . Distribution and chemical forms of gadolinium in the brain: a review. Br J Radiology 2017;90:20170115. doi:10.1259/bjr.20170115 pmid:28749164
    CrossRefPubMed
  25. 25.↵
    1. Wang C,
    2. Beadnall HN,
    3. Hatton SN, et al
    . Automated brain volumetrics in multiple sclerosis: a step closer to clinical application. J Neurol Neurosurg Psychiatry 2016;87:754–57 doi:10.1136/jnnp-2015-312304 pmid:27071647
    Abstract/FREE Full Text
  26. 26.↵
    1. Giger ML
    . Machine learning in medical imaging. J Am Coll Radiol 2018;15:512–20 doi:10.1016/j.jacr.2017.12.028 pmid:29398494
    CrossRefPubMed
  27. 27.↵
    1. Goodkin DE,
    2. Vanderburg-Medendorp S,
    3. Ross J
    . The effect of repositioning error on serial magnetic resonance imaging scans. Arch Neurol 1993;50:569–70 doi:10.1001/archneur.1993.00540060011007 pmid:8347222
    CrossRefPubMed
  28. 28.↵
    1. Gawne-Cain ML,
    2. Webb S,
    3. Tofts P, et al
    . Lesion volume measurement in multiple sclerosis: how important is accurate repositioning? J Magn Reson Imaging 1996;6:705–13 pmid:8890007
    PubMedWeb of Science
  29. 29.↵
    1. Molyneux PD,
    2. Miller DH,
    3. Filippi M, et al
    . Visual analysis of serial T2-weighted MRI in multiple sclerosis: intra- and interobserver reproducibility. Neuroradiology 1999;41:882–88 pmid:10639661
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Duan Y,
    2. Hildenbrand PG,
    3. Sampat MP, et al
    . Segmentation of subtraction images for the measurement of lesion change in multiple sclerosis. AJNR Am J Neuroradiol 2008;29:340–46 doi:10.3174/ajnr.A0795
    Abstract/FREE Full Text
  31. 31.
    1. Kurtzke JF
    . Rating neurologic impairment in multiple sclerosis: an Expanded Disability Status Scale (EDSS). Neurology 1983;33:1444–52 doi:10.1212/wnl.33.11.1444 pmid:6685237
    Abstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 40 (10)
American Journal of Neuroradiology
Vol. 40, Issue 10
1 Oct 2019
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
PACS Integration of Semiautomated Imaging Software Improves Day-to-Day MS Disease Activity Detection
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
A. Dahan, R. Pereira, C.B. Malpas, T. Kalincik, F. Gaillard
PACS Integration of Semiautomated Imaging Software Improves Day-to-Day MS Disease Activity Detection
American Journal of Neuroradiology Oct 2019, 40 (10) 1624-1629; DOI: 10.3174/ajnr.A6195

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
PACS Integration of Semiautomated Imaging Software Improves Day-to-Day MS Disease Activity Detection
A. Dahan, R. Pereira, C.B. Malpas, T. Kalincik, F. Gaillard
American Journal of Neuroradiology Oct 2019, 40 (10) 1624-1629; DOI: 10.3174/ajnr.A6195
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Automated Color-Coding of Lesion Changes in Contrast-Enhanced 3D T1-Weighted Sequences for MRI Follow-up of Brain Metastases
  • Crossref (3)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • A Clinically-Compatible Workflow for Computer-Aided Assessment of Brain Disease Activity in Multiple Sclerosis Patients
    Benoit Combès, Anne Kerbrat, Guillaume Pasquier, Olivier Commowick, Brandon Le Bon, Francesca Galassi, Philippe L'Hostis, Nora El Graoui, Raphael Chouteau, Emmanuel Cordonnier, Gilles Edan, Jean-Christophe Ferré
    Frontiers in Medicine 2021 8
  • Automated Color-Coding of Lesion Changes in Contrast-Enhanced 3D T1-Weighted Sequences for MRI Follow-up of Brain Metastases
    D. Zopfs, K. Laukamp, R. Reimer, N. Grosse Hokamp, C. Kabbasch, J. Borggrefe, L. Pennig, A.C. Bunck, M. Schlamann, S. Lennartz
    American Journal of Neuroradiology 2022 43 2
  • Transforming grayscale MRI images to color utilizing generative artificial intelligence to better understand multiple sclerosis
    Darin T. Okuda, Christine Lebrun-Frénay
    Journal of Central Nervous System Disease 2025 17

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more ADULT BRAIN

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire