Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain
Open Access

Multisite Concordance of DSC-MRI Analysis for Brain Tumors: Results of a National Cancer Institute Quantitative Imaging Network Collaborative Project

K.M. Schmainda, M.A. Prah, S.D. Rand, Y. Liu, B. Logan, M. Muzi, S.D. Rane, X. Da, Y.-F. Yen, J. Kalpathy-Cramer, T.L. Chenevert, B. Hoff, B. Ross, Y. Cao, M.P. Aryal, B. Erickson, P. Korfiatis, T. Dondlinger, L. Bell, L. Hu, P.E. Kinahan and C.C. Quarles
American Journal of Neuroradiology June 2018, 39 (6) 1008-1016; DOI: https://doi.org/10.3174/ajnr.A5675
K.M. Schmainda
aFrom the Department of Radiology (K.M.S., M.A.P., S.D.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K.M. Schmainda
M.A. Prah
aFrom the Department of Radiology (K.M.S., M.A.P., S.D.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.A. Prah
S.D. Rand
aFrom the Department of Radiology (K.M.S., M.A.P., S.D.R.)
cDepartment of Radiology (M.M., S.D.R., P.E.K.), University of Washington, Seattle, Washington
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.D. Rand
Y. Liu
bDivision of Biostatistics (Y.L., B.L.), Institute for Health and Society, Medical College of Wisconsin, Milwaukee, Wisconsin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Liu
B. Logan
bDivision of Biostatistics (Y.L., B.L.), Institute for Health and Society, Medical College of Wisconsin, Milwaukee, Wisconsin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Logan
M. Muzi
cDepartment of Radiology (M.M., S.D.R., P.E.K.), University of Washington, Seattle, Washington
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Muzi
S.D. Rane
aFrom the Department of Radiology (K.M.S., M.A.P., S.D.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.D. Rane
X. Da
dDepartment of Radiology (X.D.), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for X. Da
Y.-F. Yen
eAthinoula A. Martinos Center for Biomedical Imaging (Y.-F.Y., J.K.-C.), Department of Radiology, Harvard Medical School/Massachusetts General Hospital, Charlestown, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y.-F. Yen
J. Kalpathy-Cramer
eAthinoula A. Martinos Center for Biomedical Imaging (Y.-F.Y., J.K.-C.), Department of Radiology, Harvard Medical School/Massachusetts General Hospital, Charlestown, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Kalpathy-Cramer
T.L. Chenevert
fDepartment of Radiology (T.L.C., B.H., B.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T.L. Chenevert
B. Hoff
fDepartment of Radiology (T.L.C., B.H., B.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Hoff
B. Ross
fDepartment of Radiology (T.L.C., B.H., B.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Ross
Y. Cao
gDepartments of Radiation Oncology, Radiology, and Biomedical Engineering (Y.C., M.P.A.), University of Michigan, Ann Arbor, Michigan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Cao
M.P. Aryal
gDepartments of Radiation Oncology, Radiology, and Biomedical Engineering (Y.C., M.P.A.), University of Michigan, Ann Arbor, Michigan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.P. Aryal
B. Erickson
hDepartment of Radiology (B.E., P.K.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Erickson
P. Korfiatis
hDepartment of Radiology (B.E., P.K.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P. Korfiatis
T. Dondlinger
iImaging Biometrics LLC (T.D.), Elm Grove, Wisconsin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Dondlinger
L. Bell
jDivision of Imaging Research (L.B., C.C.Q.), Barrow Neurological Institute, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Bell
L. Hu
kDepartment of Radiology (L.H.), Mayo Clinic, Scottsdale, Arizona.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Hu
P.E. Kinahan
cDepartment of Radiology (M.M., S.D.R., P.E.K.), University of Washington, Seattle, Washington
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P.E. Kinahan
C.C. Quarles
jDivision of Imaging Research (L.B., C.C.Q.), Barrow Neurological Institute, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.C. Quarles
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Wen PY,
    2. Macdonald DR,
    3. Reardon DA, et al
    . Updated response assessment criteria for high-grade gliomas: Response Assessment in Neuro-Oncology working group. J Clin Oncol 2010;28:1963–72 doi:10.1200/JCO.2009.26.3541 pmid:20231676
    Abstract/FREE Full Text
  2. 2.↵
    1. Brandsma D,
    2. van den Bent MJ
    . Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 2009;22:633–38 doi:10.1097/WCO.0b013e328332363e pmid:19770760
    CrossRefPubMed
  3. 3.↵
    1. Wen PY,
    2. Norden AD,
    3. Drappatz J, et al
    . Response assessment challenges in clinical trials of gliomas. Curr Oncol Rep 2010;12:68–75 doi:10.1007/s11912-009-0078-3 pmid:20425610
    CrossRefPubMed
  4. 4.↵
    1. Macdonald DR,
    2. Cascino TL,
    3. Schold SC Jr., et al
    . Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990;8:1277–80 doi:10.1200/JCO.1990.8.7.1277 pmid:2358840
    Abstract
  5. 5.↵
    1. Vymazal J,
    2. Wong EY
    . Response patterns of recurrent glioblastomas treated with tumor-treating fields. Semin Oncol 2014;41(Suppl 6):S14–24 doi:10.1053/j.seminoncol.2014.09.009 pmid:25213870
    CrossRefPubMed
  6. 6.↵
    1. Aquino D,
    2. Gioppo A,
    3. Finocchiaro G, et al.
    , MRI in glioma immunotherapy: evidence, pitfalls, and perspectives. J Immunol Res 2017;2017:5813951 doi:10.1155/2017/5813951 pmid:28512646
    CrossRefPubMed
  7. 7.↵
    1. Rosen BR,
    2. Belliveau JW,
    3. Vevea JM, et al
    . Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249–65 doi:10.1002/mrm.1910140211 pmid:2345506
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Lee SJ,
    2. Kim JH,
    3. Kim YM, et al
    . Perfusion MR imaging in gliomas: comparison with histologic tumor grade. Korean J Radiol 2001;2:1–7 doi:10.3348/kjr.2001.2.1.1 pmid:11752962
    CrossRefPubMed
  9. 9.↵
    1. Schmainda KM,
    2. Rand SD,
    3. Joseph AM, et al
    . Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. AJNR Am J Neuroradiol 2004;25:1524–32 pmid:15502131
    Abstract/FREE Full Text
  10. 10.↵
    1. Law M,
    2. Oh S,
    3. Babb JS, et al
    . Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging: prediction of patient clinical response. Radiology 2006;238:658–67 doi:10.1148/radiol.2382042180 pmid:16396838
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Hu LS,
    2. Eschbacher JM,
    3. Heiserman JE, et al
    . Reevaluating the imaging definition of tumor progression: perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival. Neuro Oncol 2012;14:919–30 doi:10.1093/neuonc/nos112 pmid:22561797
    CrossRefPubMed
  12. 12.↵
    1. Prah MA,
    2. Al-Gizawiy MM,
    3. Mueller WM, et al
    . Spatial discrimination of glioblastoma and treatment effect with histologically-validated perfusion and diffusion magnetic resonance imaging metrics. J Neurooncol 2018;136:13–21 doi:10.1007/s11060-017-2617-3 pmid:28900832
    CrossRefPubMed
  13. 13.↵
    1. Schmainda KM,
    2. Prah M,
    3. Connelly J, et al
    . Dynamic-susceptibility contrast agent MRI measures of relative cerebral blood volume predict response to bevacizumab in recurrent high-grade glioma. Neuro Oncol 2014;16:880–88 doi:10.1093/neuonc/not216 pmid:24431219
    CrossRefPubMed
  14. 14.↵
    1. Kickingereder P,
    2. Wiestler B,
    3. Burth S, et al
    . Relative cerebral blood volume is a potential predictive imaging biomarker of bevacizumab efficacy in recurrent glioblastoma. Neuro Oncol 2015;17:1139–47 doi:10.1093/neuonc/nov028 pmid:25754089
    CrossRefPubMed
  15. 15.↵
    1. Harris RJ,
    2. Cloughesy TF,
    3. Hardy AJ, et al
    . MRI perfusion measurements calculated using advanced deconvolution techniques predict survival in recurrent glioblastoma treated with bevacizumab. J Neurooncol 2015;122:497–505 doi:10.1007/s11060-015-1755-8 pmid:25773062
    CrossRefPubMed
  16. 16.↵
    1. Law M,
    2. Yang S,
    3. Wang H, et al
    . Glioma grading: sensitivity, specificity and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared to conventional imaging. AJNR Am J Neuroradiol 2003;24:1989–98 pmid:14625221
    Abstract/FREE Full Text
  17. 17.↵
    1. Law M,
    2. Young RJ,
    3. Babb JS, et al
    . Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2008;247:490–98 doi:10.1148/radiol.2472070898 pmid:18349315
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Saito T,
    2. Yamasaki F,
    3. Kajiwara Y, et al
    . Role of perfusion-weighted imaging at 3T in the histopathological differentiation between astrocytic and oligodendroglial tumors. Eur J Radiol 2012;81:1863–69 doi:10.1016/j.ejrad.2011.04.009 pmid:21543173
    CrossRefPubMed
  19. 19.↵
    1. Semmineh NB,
    2. Stokes AM,
    3. Bell LC, et al
    . A population-based Digital Reference Object (DRO) for optimizing dynamic susceptibility contrast (DSC)-MRI methods for clinical trials. Tomography 2017;3:41–49 doi:10.18383/j.tom.2016.00286 pmid:28584878
    CrossRefPubMed
  20. 20.↵
    1. Paulson ES,
    2. Schmainda KM
    . Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 2008;249:601–13 doi:10.1148/radiol.2492071659 pmid:18780827
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Boxerman JL,
    2. Schmainda KM,
    3. Weisskoff RM
    . Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006;27:859–67 pmid:16611779
    Abstract/FREE Full Text
  22. 22.↵
    1. Bedekar D,
    2. Jensen T,
    3. Rand S, et al
    . Delta T1 method: an automatic post-contrast ROI selection technique for brain tumors. In: Proceedings of the Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine, Stockholm, Sweden. May 1–7, 2010
  23. 23.↵
    1. Clark K,
    2. Vendt B,
    3. Smith K, et al
    . The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 2013;26:1045–57 doi:10.1007/s10278-013-9622-7 pmid:23884657
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Schmainda KM,
    2. Prah MA,
    3. Connelly JM, et al
    . Glioma DSC-MRI perfusion data with standard imaging and ROIs. The Cancer Imaging Archive. http://doi.org/10.7937/K9/TCIA.2016.5DI84Js8. Accessed July 27, 2016.
  25. 25.↵
    1. Sugahara T,
    2. Korogi Y,
    3. Tomiguchi S, et al
    . Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 2000;21:901–09 pmid:10815666
    Abstract/FREE Full Text
  26. 26.↵
    1. Lev MH,
    2. Ozsunar Y,
    3. Henson JW, et al
    . Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas [corrected]. AJNR Am J Neuroradiol 2004;25:214–21 pmid:14970020
    Abstract/FREE Full Text
  27. 27.↵
    1. Hirai T,
    2. Murakami R,
    3. Nakamura H, et al
    . Prognostic value of perfusion MR imaging of high-grade astrocytomas: long-term follow-up study. AJNR Am J Neuroradiol 2008;29:1505–10 doi:10.3174/ajnr.A1121 pmid:18556364
    Abstract/FREE Full Text
  28. 28.↵
    1. Jiang Z,
    2. Le Bas JF,
    3. Grand S, et al
    . Prognostic value of perfusion MR imaging in patients with oligodendroglioma: a survival study. J Neuroradiol 2011;38:53–61 doi:10.1016/j.neurad.2010.03.004 pmid:20554324
    CrossRefPubMed
  29. 29.↵
    1. Saraswathy S,
    2. Crawford FW,
    3. Lamborn KR, et al
    . Evaluation of MR markers that predict survival in patients with newly diagnosed GBM prior to adjuvant therapy. J Neurooncol 2009;91:69–81 doi:10.1007/s11060-008-9685-3 pmid:18810326
    CrossRefPubMed
  30. 30.↵
    1. Kong DS,
    2. Kim ST,
    3. Kim EH, et al
    . Diagnostic dilemma of pseudoprogression in the treatment of newly diagnosed glioblastomas: the role of assessing relative cerebral blood flow volume and oxygen-6-methylguanine-DNA methyltransferase promoter methylation status. AJNR Am J Neuroradiol 2011;32:382–87 doi:10.3174/ajnr.A2286 pmid:21252041
    Abstract/FREE Full Text
  31. 31.↵
    1. Hu LS,
    2. Baxter LC,
    3. Smith KA, et al
    . Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 2009;30:552–58 doi:10.3174/ajnr.A1377 pmid:19056837
    Abstract/FREE Full Text
  32. 32.↵
    1. Orsingher L,
    2. Piccinini S,
    3. Crisi G
    . Differences in dynamic susceptibility contrast MR perfusion maps generated by different methods implemented in commercial software. J Comput Assist Tomogr 2014;38:647–54 doi:10.1097/RCT.0000000000000115 pmid:24879459
    CrossRefPubMed
  33. 33.↵
    1. Knutsson L,
    2. Larsson EM,
    3. Thilmann O, et al
    . Calculation of cerebral perfusion parameters using regional arterial input functions identified by factor analysis. J Magn Reson Imaging 2006;23:444–53 doi:10.1002/jmri.20535 pmid:16523467
    CrossRefPubMed
  34. 34.↵
    1. Jafari-Khouzani K,
    2. Emblem KE,
    3. Kalpathy-Cramer J, et al
    . Repeatability of cerebral perfusion using dynamic susceptibility contrast MRI in glioblastoma patients. Transl Oncol 2015;8:137–46 doi:10.1016/j.tranon.2015.03.002 pmid:26055170
    CrossRefPubMed
  35. 35.↵
    1. Perkio J,
    2. Aronen HJ,
    3. Kangasmäki A, et al
    . Evaluation of four postprocessing methods for determination of cerebral blood volume and mean transit time by dynamic susceptibility contrast imaging. Magn Reson Med 2002;47:973–81 doi:10.1002/mrm.10126 pmid:11979577
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Paulson ES,
    2. Prah DE,
    3. Schmainda KM
    . Spiral Perfusion Imaging With Consecutive Echoes (SPICE) for the simultaneous mapping of DSC- and DCE-MRI parameters in brain tumor patients: theory and initial feasibility. Tomography 2016;2:295–307 doi:10.18383/j.tom.2016.00217 pmid:28090589
    CrossRefPubMed
  37. 37.↵
    1. Korfiatis P,
    2. Kline TL,
    3. Kelm ZS, et al
    . Dynamic susceptibility contrast-MRI quantification software tool: development and evaluation. Tomography 2016;2:448–56 doi:10.18383/j.tom.2016.00172 pmid:28066810
    CrossRefPubMed
  38. 38.↵
    1. Kelm ZS,
    2. Korfiatis PD,
    3. Lingineni RK, et al
    . Variability and accuracy of different software packages for dynamic susceptibility contrast magnetic resonance imaging for distinguishing glioblastoma progression from pseudoprogression. J Med Imaging (Bellingham) 2015;2:026001 doi:10.1117/1.JMI.2.2.026001 pmid:26158114
    CrossRefPubMed
  39. 39.↵
    1. Hu LS,
    2. Kelm Z,
    3. Korfiatis P,
    4. Dueck , et al
    . Impact of software modeling on the accuracy of perfusion MRI in glioma. AJNR Am J Neuroradiol 2015;36:2242–49 doi:10.3174/ajnr.A4451 pmid:26359151
    Abstract/FREE Full Text
  40. 40.↵
    1. Boxerman JL,
    2. Shiroishi MS,
    3. Ellingson BM, et al
    . Dynamic susceptibility contrast MR imaging in glioma: review of current clinical practice. Magn Reson Imaging Clin N Am 2016;24:649–70 doi:10.1016/j.mric.2016.06.005 pmid:27742108
    CrossRefPubMed
  41. 41.↵
    1. Leu K,
    2. Boxerman JL,
    3. Ellingson BM
    . Effects of MRI protocol parameters, preload injection dose, fractionation strategies, and leakage correction algorithms on the fidelity of dynamic-susceptibility contrast MRI estimates of relative cerebral blood volume in gliomas. AJNR Am J Neuroradiol 2017;38:478–84 doi:10.3174/ajnr.A5027 pmid:28034995
    Abstract/FREE Full Text
  42. 42.↵
    1. Havaei M,
    2. Davy A,
    3. Warde-Farley D, et al
    . Brain tumor segmentation with deep neural networks. Med Image Anal 2017;35:18–31 doi:10.1016/j.media.2016.05.004 pmid:27310171
    CrossRefPubMed
  43. 43.↵
    1. Menze BH,
    2. Jakab A,
    3. Bauer S, et al
    . The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans Med Imaging 2015;34:1993–2024 doi:10.1109/TMI.2014.2377694 pmid:25494501
    CrossRefPubMed
  44. 44.
    1. Bjornerud A,
    2. Sorensen AG,
    3. Mouridsen K, et al
    . T1- and T2*-dominant extravasation correction in DSC-MRI, Part I, theoretical considerations and implications for assessment of tumor hemodynamic properties. J Cereb Blood Flow Metab 2011;31:2041–53 doi:10.1038/jcbfm.2011.52 pmid:21505483
    CrossRefPubMed
  45. 45.
    1. Weisskoff RM,
    2. Zuo CS,
    3. Boxerman JL, et al
    . Simultaneous blood volume and permeability mapping using a single Gd-based contrast injection. In: Proceedings of the Annual Meeting and Exhibition of the Society of Magnetic Resonance in Medicine, San Francisco, California. August 6–12, 1994
  46. 46.
    1. Liu HL,
    2. Wu YY,
    3. Yang WS, et al
    . Is Weisskoff model valid for the correction of contrast agent extravasation with combined T1 and T2* effects in dynamic susceptibility contrast MRI? Med Phys 2011;38:802–09 doi:10.1118/1.3534197 pmid:21452717
    CrossRefPubMed
  47. 47.
    1. Bedekar D,
    2. Jensen T,
    3. Schmainda KM
    . Standardization of relative cerebral blood volume (rCBV) image maps for ease of both inter- and intrapatient comparisons. Magn Reson Med 2010;64:907–13 doi:10.1002/mrm.22445 pmid:20806381
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 39 (6)
American Journal of Neuroradiology
Vol. 39, Issue 6
1 Jun 2018
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Multisite Concordance of DSC-MRI Analysis for Brain Tumors: Results of a National Cancer Institute Quantitative Imaging Network Collaborative Project
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
K.M. Schmainda, M.A. Prah, S.D. Rand, Y. Liu, B. Logan, M. Muzi, S.D. Rane, X. Da, Y.-F. Yen, J. Kalpathy-Cramer, T.L. Chenevert, B. Hoff, B. Ross, Y. Cao, M.P. Aryal, B. Erickson, P. Korfiatis, T. Dondlinger, L. Bell, L. Hu, P.E. Kinahan, C.C. Quarles
Multisite Concordance of DSC-MRI Analysis for Brain Tumors: Results of a National Cancer Institute Quantitative Imaging Network Collaborative Project
American Journal of Neuroradiology Jun 2018, 39 (6) 1008-1016; DOI: 10.3174/ajnr.A5675

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Multisite Concordance of DSC-MRI Analysis for Brain Tumors: Results of a National Cancer Institute Quantitative Imaging Network Collaborative Project
K.M. Schmainda, M.A. Prah, S.D. Rand, Y. Liu, B. Logan, M. Muzi, S.D. Rane, X. Da, Y.-F. Yen, J. Kalpathy-Cramer, T.L. Chenevert, B. Hoff, B. Ross, Y. Cao, M.P. Aryal, B. Erickson, P. Korfiatis, T. Dondlinger, L. Bell, L. Hu, P.E. Kinahan, C.C. Quarles
American Journal of Neuroradiology Jun 2018, 39 (6) 1008-1016; DOI: 10.3174/ajnr.A5675
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Multisite Benchmark Study for Standardized Relative CBV in Untreated Brain Metastases Using the DSC-MRI Consensus Acquisition Protocol
  • Identification of a Single-Dose, Low-Flip-Angle-Based CBV Threshold for Fractional Tumor Burden Mapping in Recurrent Glioblastoma
  • Arterial Spin-Labeling and DSC Perfusion Metrics Improve Agreement in Neuroradiologists Clinical Interpretations of Posttreatment High-Grade Glioma Surveillance MR Imaging--An Institutional Experience
  • Perfusion MRI-Based Fractional Tumor Burden Differentiates between Tumor and Treatment Effect in Recurrent Glioblastomas and Informs Clinical Decision-Making
  • Moving Toward a Consensus DSC-MRI Protocol: Validation of a Low-Flip Angle Single-Dose Option as a Reference Standard for Brain Tumors
  • Crossref (46)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high-grade gliomas
    Jerrold L Boxerman, Chad C Quarles, Leland S Hu, Bradley J Erickson, Elizabeth R Gerstner, Marion Smits, Timothy J Kaufmann, Daniel P Barboriak, Raymond H Huang, Wolfgang Wick, Michael Weller, Evanthia Galanis, Jayashree Kalpathy-Cramer, Lalitha Shankar, Paula Jacobs, Caroline Chung, Martin J van den Bent, Susan Chang, W K Al Yung, Timothy F Cloughesy, Patrick Y Wen, Mark R Gilbert, Bruce R Rosen, Benjamin M Ellingson, Kathleen M Schmainda, David F Arons, Ann Kingston, David Sandak, Max Wallace, Al Musella, Chas Haynes
    Neuro-Oncology 2020 22 9
  • Imaging vascular and hemodynamic features of the brain using dynamic susceptibility contrast and dynamic contrast enhanced MRI
    C. Chad Quarles, Laura C. Bell, Ashley M. Stokes
    NeuroImage 2019 187
  • MRI brain tumor medical images analysis using deep learning techniques: a systematic review
    Sabaa Ahmed Yahya Al-Galal, Imad Fakhri Taha Alshaikhli, M. M. Abdulrazzaq
    Health and Technology 2021 11 2
  • High-Grade Glioma Treatment Response Monitoring Biomarkers: A Position Statement on the Evidence Supporting the Use of Advanced MRI Techniques in the Clinic, and the Latest Bench-to-Bedside Developments. Part 1: Perfusion and Diffusion Techniques
    Otto M. Henriksen, María del Mar Álvarez-Torres, Patricia Figueiredo, Gilbert Hangel, Vera C. Keil, Ruben E. Nechifor, Frank Riemer, Kathleen M. Schmainda, Esther A. H. Warnert, Evita C. Wiegers, Thomas C. Booth
    Frontiers in Oncology 2022 12
  • Magnetic Resonance Imaging of Primary Adult Brain Tumors: State of the Art and Future Perspectives
    Matia Martucci, Rosellina Russo, Francesco Schimperna, Gabriella D’Apolito, Marco Panfili, Alessandro Grimaldi, Alessandro Perna, Andrea Maurizio Ferranti, Giuseppe Varcasia, Carolina Giordano, Simona Gaudino
    Biomedicines 2023 11 2
  • Biologically-Based Mathematical Modeling of Tumor Vasculature and Angiogenesis via Time-Resolved Imaging Data
    David A. Hormuth, Caleb M. Phillips, Chengyue Wu, Ernesto A. B. F. Lima, Guillermo Lorenzo, Prashant K. Jha, Angela M. Jarrett, J. Tinsley Oden, Thomas E. Yankeelov
    Cancers 2021 13 12
  • Advanced MR Techniques for Preoperative Glioma Characterization: Part 1
    Lydiane Hirschler, Nico Sollmann, Bárbara Schmitz‐Abecassis, Joana Pinto, Fatemehsadat Arzanforoosh, Frederik Barkhof, Thomas Booth, Marta Calvo‐Imirizaldu, Guilherme Cassia, Marek Chmelik, Patricia Clement, Ece Ercan, Maria A. Fernández‐Seara, Julia Furtner, Elies Fuster‐Garcia, Matthew Grech‐Sollars, Nazmiye Tugay Guven, Gokce Hale Hatay, Golestan Karami, Vera C. Keil, Mina Kim, Johan A. F. Koekkoek, Simran Kukran, Laura Mancini, Ruben Emanuel Nechifor, Alpay Özcan, Esin Ozturk‐Isik, Senol Piskin, Kathleen Schmainda, Siri F. Svensson, Chih‐Hsien Tseng, Saritha Unnikrishnan, Frans Vos, Esther Warnert, Moss Y. Zhao, Radim Jancalek, Teresa Nunes, Kyrre E. Emblem, Marion Smits, Jan Petr, Gilbert Hangel
    Journal of Magnetic Resonance Imaging 2023 57 6
  • Precise enhancement quantification in post-operative MRI as an indicator of residual tumor impact is associated with survival in patients with glioblastoma
    Alonso Garcia-Ruiz, Pablo Naval-Baudin, Marta Ligero, Albert Pons-Escoda, Jordi Bruna, Gerard Plans, Nahum Calvo, Monica Cos, Carles Majós, Raquel Perez-Lopez
    Scientific Reports 2021 11 1
  • From research to clinical practice: a European neuroradiological survey on quantitative advanced MRI implementation
    Elia Manfrini, Marion Smits, Steffi Thust, Sergej Geiger, Zeynep Bendella, Jan Petr, Laszlo Solymosi, Vera C. Keil
    European Radiology 2021 31 8
  • Towards Personalized Diagnosis of Glioblastoma in Fluid-Attenuated Inversion Recovery (FLAIR) by Topological Interpretable Machine Learning
    Matteo Rucco, Giovanna Viticchi, Lorenzo Falsetti
    Mathematics 2020 8 5

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more ADULT BRAIN

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire